
Tools

version 2.0

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Chapter 1

Tools User’s Guide

The Tools application contains a number of stand-alone tools, which are useful when developing Erlang
programs.

cover A coverage analysis tool for Erlang.

eprof A time profiling tool; measure how time is used in Erlang programs. Erlang programs.
Predecessor of fprof (see below).

fprof Another Erlang profiler; measure how time is used in your Erlang programs. Uses trace to file to
minimize runtime performance impact, and displays time for calling and called functions.

instrument Utility functions for obtaining and analysing resource usage in an instrumented Erlang
runtime system.

make A make utility for Erlang similar to UNIX make.

tags A tool for generating Emacs TAGS files from Erlang source files.

xref A cross reference tool. Can be used to check dependencies between functions, modules,
applications and releases.

1.1 cover

1.1.1 Introduction

The module cover provides a set of functions for coverage analysis of Erlang programs, counting how
many times each executable line [page 8] is executed.

Coverage analysis can be used to verify test cases, making sure all relevant code is covered, and may be
helpful when looking for bottlenecks in the code.

1.1.2 Getting Started With Cover

Example

Assume that a test case for the following program should be verified:

1Tools

Chapter 1: Tools User’s Guide

-module(channel).
-behaviour(gen_server).

-export([start_link/0,stop/0]).
-export([alloc/0,free/1]). % client interface
-export([init/1,handle_call/3,terminate/2]). % callback functions

start_link() ->
gen_server:start_link({local,channel},channel,[],[]).

stop() ->
gen_server:call(channel,stop).

%%%-Client interface functions---

alloc() ->
gen_server:call(channel,alloc).

free(Channel) ->
gen_server:call(channel,{free,Channel}).

%%%-gen_server callback functions--

init(_Arg) ->
{ok,channels()}.

handle_call(stop,Client,Channels) ->
{stop,normal,ok,Channels};

handle_call(alloc,Client,Channels) ->
{Ch,Channels2} = alloc(Channels),
{reply,{ok,Ch},Channels2};

handle_call({free,Channel},Client,Channels) ->
Channels2 = free(Channel,Channels),
{reply,ok,Channels2}.

terminate(_Reason,Channels) ->
ok.

%%%-Internal functions---

channels() ->
[ch1,ch2,ch3].

alloc([Channel|Channels]) ->
{Channel,Channels};

alloc([]) ->
false.

free(Channel,Channels) ->
[Channel|Channels].

2 Tools

1.1: cover

The test case is implemented as follows:

-module(test).
-export([s/0]).

s() ->
{ok,Pid} = channel:start_link(),
{ok,Ch1} = channel:alloc(),
ok = channel:free(Ch1),
ok = channel:stop().

Preparation

First of all, Cover must be started. This spawns a process which owns the Cover database where all
coverage data will be stored.

1> cover:start().
{ok,<0.30.0>}

Before any analysis can take place, the involved modules must be Cover compiled. This means that some
extra information is added to the module before it is compiled into a binary which then is loaded [page
8]. The source file of the module is not affected and no .beam file is created.

2> cover:compile_module(channel).
{ok,channel}

Each time a function in the Cover compiled module channel is called, information about the call will
be added to the Cover database. Run the test case:

3> test:s().
ok

Cover analysis is performed by examining the contents of the Cover database. The output is
determined by two parameters, Level and Analysis. Analysis is either coverage or calls and
determines the type of the analysis. Level is either module, function, clause, or line and determines
the level of the analysis.

Coverage Analysis

Analysis of type coverage is used to find out how much of the code has been executed and how much
has not been executed. Coverage is represented by a tuple fCov,NotCovg, where Cov is the number of
executable lines that have been executed at least once and NotCov is the number of executable lines
that have not been executed.

If the analysis is made on module level, the result is given for the entire module as a tuple
fModule,fCov,NotCovgg:

4> cover:analyse(channel,coverage,module).
{ok,{channel,{14,1}}}

3Tools

Chapter 1: Tools User’s Guide

For channel, the result shows that 14 lines in the module are covered but one line is not covered.

If the analysis is made on function level, the result is given as a list of tuples
fFunction,fCov,NotCovgg, one for each function in the module. A function is specified by its module
name, function name and arity:

5> cover:analyse(channel,coverage,function).
{ok,[{{channel,start_link,0},{1,0}},

{{channel,stop,0},{1,0}},
{{channel,alloc,0},{1,0}},
{{channel,free,1},{1,0}},
{{channel,init,1},{1,0}},
{{channel,handle_call,3},{5,0}},
{{channel,terminate,2},{1,0}},
{{channel,channels,0},{1,0}},
{{channel,alloc,1},{1,1}},
{{channel,free,2},{1,0}}]}

For channel, the result shows that the uncovered line is in the function channel:alloc/1.

If the analysis is made on clause level, the result is given as a list of tuples fClause,fCov,NotCovgg, one
for each function clause in the module. A clause is specified by its module name, function name, arity
and position within the function definition:

6> cover:analyse(channel,coverage,clause).
{ok,[{{channel,start_link,0,1},{1,0}},

{{channel,stop,0,1},{1,0}},
{{channel,alloc,0,1},{1,0}},
{{channel,free,1,1},{1,0}},
{{channel,init,1,1},{1,0}},
{{channel,handle_call,3,1},{1,0}},
{{channel,handle_call,3,2},{2,0}},
{{channel,handle_call,3,3},{2,0}},
{{channel,terminate,2,1},{1,0}},
{{channel,channels,0,1},{1,0}},
{{channel,alloc,1,1},{1,0}},
{{channel,alloc,1,2},{0,1}},
{{channel,free,2,1},{1,0}}]}

For channel, the result shows that the uncovered line is in the second clause of channel:alloc/1.

Finally, if the analysis is made on line level, the result is given as a list of tuples fLine,fCov,NotCovgg,
one for each executable line in the source code. A line is specified by its module name and line number.

7> cover:analyse(channel,coverage,line).
{ok,[{{channel,9},{1,0}},

{{channel,12},{1,0}},
{{channel,17},{1,0}},
{{channel,20},{1,0}},
{{channel,25},{1,0}},
{{channel,28},{1,0}},
{{channel,31},{1,0}},
{{channel,32},{1,0}},
{{channel,35},{1,0}},

4 Tools

1.1: cover

{{channel,36},{1,0}},
{{channel,39},{1,0}},
{{channel,44},{1,0}},
{{channel,47},{1,0}},
{{channel,49},{0,1}},
{{channel,52},{1,0}}]}

For channel, the result shows that the uncovered line is line number 49.

Call Statistics

Analysis of type calls is used to find out how many times something has been called and is represented
by an integer Calls.

If the analysis is made on module level, the result is given as a tuple fModule,Callsg. Here Calls is the
total number of calls to functions in the module:

8> cover:analyse(channel,calls,module).
{ok,{channel,12}}

For channel, the result shows that a total of twelve calls have been made to functions in the module.

If the analysis is made on function level, the result is given as a list of tuples fFunction,Callsg. Here
Calls is the number of calls to each function:

9> cover:analyse(channel,calls,function).
{ok,[{{channel,start_link,0},1},

{{channel,stop,0},1},
{{channel,alloc,0},1},
{{channel,free,1},1},
{{channel,init,1},1},
{{channel,handle_call,3},3},
{{channel,terminate,2},1},
{{channel,channels,0},1},
{{channel,alloc,1},1},
{{channel,free,2},1}]}

For channel, the result shows that handle call/3 is the most called function in the module (three
calls). All other functions have been called once.

If the analysis is made on clause level, the result is given as a list of tuples fClause,Callsg. Here Calls
is the number of calls to each function clause:

10> cover:analyse(channel,calls,clause).
{ok,[{{channel,start_link,0,1},1},

{{channel,stop,0,1},1},
{{channel,alloc,0,1},1},
{{channel,free,1,1},1},
{{channel,init,1,1},1},
{{channel,handle_call,3,1},1},
{{channel,handle_call,3,2},1},
{{channel,handle_call,3,3},1},
{{channel,terminate,2,1},1},
{{channel,channels,0,1},1},

5Tools

Chapter 1: Tools User’s Guide

{{channel,alloc,1,1},1},
{{channel,alloc,1,2},0},
{{channel,free,2,1},1}]}

For channel, the result shows that all clauses have been called once, except the second clause of
channel:alloc/1 which has not been called at all.

Finally, if the analysis is made on line level, the result is given as a list of tuples fLine,Callsg. Here
Calls is the number of times each line has been executed:

11> cover:analyse(channel,calls,line).
{ok,[{{channel,9},1},

{{channel,12},1},
{{channel,17},1},
{{channel,20},1},
{{channel,25},1},
{{channel,28},1},
{{channel,31},1},
{{channel,32},1},
{{channel,35},1},
{{channel,36},1},
{{channel,39},1},
{{channel,44},1},
{{channel,47},1},
{{channel,49},0},
{{channel,52},1}]}

For channel, the result shows that all lines have been executed once, except line number 49 which has
not been executed at all.

Analysis to File

A line level calls analysis of channel can be written to a file using cover:analysis to file/1:

12> cover:analyse_to_file(channel).
{ok,"channel.COVER.out"}

The function creates a copy of channel.erl where it for each executable line is specified how many
times that line has been executed. The output file is called channel.COVER.out.

File generated from channel.erl by COVER 2001-05-21 at 11:16:38

**

| -module(channel).
| -behaviour(gen server).
|
| -export([start link/0,stop/0]).
| -export([alloc/0,free/1]). % client interface
| -export([init/1,handle call/3,terminate/2]). % callback functions
|
| start link() ->

6 Tools

1.1: cover

1..| gen server:start link(flocal,channelg,channel,[],[]).
|
| stop() ->

1..| gen server:call(channel,stop).
|
| %%%-Client interface functions------------------------------------
|
| alloc() ->

1..| gen server:call(channel,alloc).
|
| free(Channel) ->

1..| gen server:call(channel,ffree,Channelg).
|
| %%%-gen server callback functions---------------------------------
|
| init(Arg) ->

1..| fok,channels()g.
|
| handle call(stop,Client,Channels) ->

1..| fstop,normal,ok,Channelsg;
|
| handle call(alloc,Client,Channels) ->

1..| fCh,Channels2g = alloc(Channels),
1..| freply,fok,Chg,Channels2g;

|
| handle call(ffree,Channelg,Client,Channels) ->

1..| Channels2 = free(Channel,Channels),
1..| freply,ok,Channels2g.

|
| terminate(Reason,Channels) ->

1..| ok.
|
| %%%-Internal functions--
|
| channels() ->

1..| [ch1,ch2,ch3].
|
| alloc([Channel|Channels]) ->

1..| fChannel,Channelsg;
| alloc([]) ->

0..| false.
|
| free(Channel,Channels) ->

1..| [Channel|Channels].

Conclusion

By looking at the results from the analyses, it can be deducted that the test case does not cover the case
when all channels are allocated and test.erl should be extended accordingly.
Incidentally, when the test case is corrected a bug in channel should indeed be discovered.

7Tools

Chapter 1: Tools User’s Guide

When the Cover analysis is ready, Cover is stopped and all Cover compiled modules are unloaded [page
8]. The code for channel is now loaded as usual from a .beam file in the current path.

13> code:which(channel).
cover_compiled
14> cover:stop().
ok
15> code:which(channel).
"./channel.beam"

1.1.3 Miscellaneous

Performance

Execution of code in Cover compiled modules is slower and more memory consuming than for
regularly compiled modules. As the Cover database contains information about each executable line in
each Cover compiled module, performance decreases proportionally to the size and number of the
Cover compiled modules.

Executable Lines

Cover uses the concept of executable lines, which is lines of code containing an executable expression
such as a matching or a function call. A blank line or a line containing a comment, function head or
pattern in a case- or receive statement is not executable.

In the example below, lines number 2,4,6,8 and 11 are executable lines:

1: is loaded(Module,Compiled) ->
2: case get file(Module,Compiled) of
3: fok,Fileg ->
4: case code:which(Module) of
5: ?TAG ->
6: floaded,Fileg;
7: ->
8: unloaded
9: end;
10: false ->
11: false
12: end.

Code Loading Mechanism

When a module is Cover compiled, it is also loaded using the normal code loading mechanism of
Erlang. This means that if a Cover compiled module is re-loaded during a Cover session, for example
using c(Module), it will no longer be Cover compiled.

Use cover:is compiled/1 or code:which/1 to see if a module is Cover compiled (and still loaded) or
not.

When Cover is stopped, all Cover compiled modules are unloaded.

8 Tools

1.1: cover

1.1.4 Using the Web Based User Interface to Cover

Introduction

To ease the use of Cover there is a web based user interface to Cover. The web based user interface to
Cover is designed to be started and used via WebTool. It is possible to Cover compile Erlang modules
and to generate printable Cover and Call analyses via the web based user interface.

Start the Web Based User Interface to Cover

Configure WebTool to manage the web based user interface to Cover, see WebTool User’s Guide for
more information. Start WebTool and point a browser to the start page of WebTool. Currently the web
based user interface to Cover is only compatible with Internet Explorer and Netscape Navigator 4.0 and
higher.

Click on the link marked WebCover in the topmost frame of WebTool. The main frame of the browser
will then show the web based user interface to Cover.

Cover Compile

To Cover compile a module or all the modules in a given directory select Compile in the left frame.
Write the filename or the directory to be Cover compiled into the text field labeled Module or Directory.
If other compile options than the standard compile options is needed, write them in the field labeled
Compile Options. Click on the button labeled Compile. The module(s) will then be Cover compiled

If the name of the directory or file to Cover compile is unknown, it is possible to list the Erlang files in a
directory, and change the working directory for the node from the web based user interface. This is
done in the right part of the page.

Create Cover and Call Analyses

To generate Cover or Call analysis, Cover compile the file either from the web based user interface or
from the command line. Execute the code and drag the mouse over the module name, in the list of
modules in the left frame. A pop-up menu will appear, select the wanted action from the menu and the
result of the analyse will show up in the right frame.

To narrow the information in the Cover and Call analysis select one of the radio buttons at the top of
the page.

View the source code with Line Level Analyze information

To view the source file of a Cover compiled module with additional cover information for each line,
drag the mouse over the module name in the left frame and a pop-up menu appears. Select Source File
in the popup-menu. The source with line level analysis information will then come up in the left frame.

9Tools

Chapter 1: Tools User’s Guide

1.2 fprof - The File Trace Profiler

fprof is a profiling tool that can be used to get a picture of how much processing time different
functions consumes and in which processes.

fprof uses tracing with timestamps to collect profiling data. Therfore there is no need for special
compilation of any module to be profiled.

fprof presents wall clock times from the host machine OS, with the assumption that OS scheduling
will randomly load the profiled functions in a fair way. Both own time i.e the time used by a function for
its own execution, and accumulated time i.e execution time including called functions.

Profiling is essentially done in 3 steps:

1 Tracing; to file, as mentioned in the previous paragraph.

2 Profiling; the trace file is read and raw profile data is collected into an internal RAM storage on the
node. During this step the trace data may be dumped in text format to file or console.

3 Analysing; the raw profile data is sorted and dumped in text format either to file or console.

Since fprof uses trace to file, the runtime performance degradation is minimized, but still far from
negligible, especially not for programs that use the filesystem heavily by themselves. Where you place
the trace file is also important, e.g on Solaris /tmp is usually a good choice, while any NFS mounted disk
is a lousy choice.

Fprof can also skip the file step and trace to a tracer process of its own that does the profiling in runtime.

The following sections show some examples of how to profile with Fprof. See also the reference manual
fprof(3) [page 29].

1.2.1 Profiling from the source code

If you can edit and recompile the source code, it is convenient to insert fprof:trace(start) and
fprof:trace(stop) before and after the code to be profiled. All spawned processes are also traced. If
you want some other filename than the default try fprof:trace(start, "my fprof.trace").

Then read the trace file and create the raw profile data with fprof:profile(), or perhaps
fprof:profile(file, "my fprof.trace") for non-default filename.

Finally create an informative table dumped on the console with fprof:analyse(), or on file with
fprof:analyse(dest, []), or perhaps even fprof:analyse([fdest, "my fprof.analysis"g,
fcols, 120g]) for a wider listing on non-default filename.

See the fprof(3) [page 29] manual page for more options and arguments to the functions trace [page
31], profile [page 33] and analyse [page 34].

1.2.2 Profiling a function

If you have one function that does the task that you want to profile, and the function returns when the
profiling should stop, it is convenient to use fprof:apply(Module, Function, Args) and related for
the tracing step.

If the tracing should continue after the function returns, for example if it is a start function that spawns
processes to be profiled, you can use fprof:apply(M, F, Args, [continue | OtherOpts]). The
tracing has to be stopped at a suitable later time using fprof:trace(stop).

10 Tools

1.3: xref - The Cross Reference Tool

1.2.3 Immediate profiling

It is also possible to trace immediately into the profiling process that creates the raw profile data, that is
to short circuit the tracing and profiling steps so that the filesystem is not used.

Do something like this:

fok, Tracerg = fprof:profile(start),
fprof:trace([start, ftracer, Tracerg]),
%% Code to profile
fprof:trace(stop);

This puts less load on the filesystem, but much more on the Erlang runtime system.

1.3 xref - The Cross Reference Tool

xref is a cross reference tool that can be used for finding dependencies between functions, modules,
applications and releases. It does so by analyzing the defined functions and the function calls.

In order to make xref easy to use, there are predefined analyses that perform some common tasks.
Typically, a module or a release can be checked for calls to undefined functions. For the somewhat more
advanced user there is a small, but rather flexible, language that can be used for selecting parts of the
analyzed system and for doing some simple graph analyses on selected calls.

The following sections show some features of xref, beginning with a module check and a predefined
analysis. Then follow examples that can be skipped on the first reading; not all of the concepts used are
explained, and it is assumed that the reference manual [page 49] has been at least skimmed.

1.3.1 Module Check

Assume we want to check the following module:

-module(my module).

-export([t/1]).

t(A) ->
my module:t2(A).

t2() ->
true.

Cross reference data are read from BEAM files, so the first step when checking an edited module is to
compile it:

1> c(my module, debug info).
./my module.erl:10: Warning: function t2/1 is unused
fok, my moduleg

11Tools

Chapter 1: Tools User’s Guide

The debug info option ensures that the BEAM file contains debug information, which makes it
possible to find unused local functions.

The module can now be checked for calls to undefined functions [page 50] and unused local functions:

2> xref:m(my module)
[fundefined,[ffmy module,t,1g,fmy module,t2,1gg]g,
funused,[fmy module,t2,1g]g]

m/1 is also suitable for checking that the BEAM file of a module that is about to be loaded into a
running a system does not call any undefined functions. In either case, the code path of the code server
(see the module code) is used for finding modules that export externally called functions not exported
by the checked module itself, so called library modules [page 50].

1.3.2 Predefined Analysis

In the last example the module to analyze was given as an argument to m/1, and the code path was
(implicitly) used as library path [page 50]. In this example an xref server [page 49] will be used, which
makes it possible to analyze applications and releases, and also to select the library path explicitly.

Each xref server is referred to by a unique name. The name is given when creating the server:

1> xref:start(s).
fok,<0.27.0>g

Next the system to be analyzed is added to the xref server. Here the system will be OTP, so no library
path will be needed. Otherwise, when analyzing a system that uses OTP, the OTP modules are typically
made library modules by setting the library path to the default OTP code path (or to code path, see the
reference manual [page 67]). By default, the names of read BEAM files and warnings are output when
adding analyzed modules, but these messages can be avoided by setting default values of some options:

2> xref:set default(s, [fverbose,falseg, fwarnings,falseg]).
ok
3> xref:add release(s, code:lib dir(), fname, otpg).
fok,otpg

add release/3 assumes that all subdirectories of the library directory returned by code:lib dir()
contain applications; the effect is that of reading all applications’ BEAM files.

It is now easy to check the release for calls to undefined functions:

4> xref:analyze(s, undefined function calls).
fok, [...]g

We can now continue with further analyses, or we can delete the xref server:

5> xref:stop(s).

The check for calls to undefined functions is an example of a predefined analysis, probably the most
useful one. Other examples are the analyses that find unused local functions, or functions that call some
given functions. See the analyze/2,3 [page 59] functions for a complete list of predefined analyses.

Each predefined analysis is a shorthand for a query [page 56], a sentence of a tiny language providing
cross reference data as values of predefined variables [page 51]. The check for calls to undefined
functions can thus be stated as a query:

12 Tools

1.3: xref - The Cross Reference Tool

4> xref:q(s, "(XC - UC) || (XU - X - B)").
fok,[...]g

The query asks for the restriction of external calls except the unresolved calls to calls to functions that
are externally used but neither exported nor built-in functions (the || operator restricts the used
functions while the | operator restricts the calling functions). The - operator returns the difference of
two sets, and the + operator to be used below returns the union of two sets.

The relationships between the predefined variables XU, X, B and a few others are worth elaborating
upon. The reference manual mentions two ways of expressing the set of all functions, one that focuses
on how they are defined: X+L+B+U, and one that focuses on how they are used: UU+LU+XU. The
reference also mentions some facts [page 52] about the variables:

� F is equal to L + X (the defined functions are the local functions and the external functions);

� U is a subset of XU (the unknown functions are a subset of the externally used functions since the
compiler ensures that locally used functions are defined);

� B is a subset of XU (calls to built-in functions are always external by definition, and unused built-in
functions are ignored);

� LU is a subset of F (the locally used functions are either local functions or exported functions,
again ensured by the compiler);

� UU is equal to F-(XU+LU) (the unused functions are defined functions that are neither used
externally nor locally);

� UU is a subset of F (the unused functions are defined in analyzed modules).

Using these facts, the two small circles in the picture below can be combined.

Definition and Use

XU
and
LU

LU XUUU

U

B

Definition

X

L

Use

Figure 1.1: Definition and use of functions

13Tools

Chapter 1: Tools User’s Guide

It is often clarifying to mark the variables of a query in such a circle. This is illustrated in the picture
below for some of the predefined analyses. Note that local functions used by local functions only are
not marked in the locals not used circle.

X − XU

exports_not_used

L * (UU + (XU − LU))

locals_not_used (simplified)

XU − X − B

undefined_functions
(modules mode)

Figure 1.2: Some predefined analyses as subsets of all functions

1.3.3 Expressions

The module check and the predefined analyses are useful, but limited. Sometimes more flexibility is
needed, for instance one might not need to apply a graph analysis on all calls, but some subset will do
equally well. That flexibility is provided with a simple language. Below are some expressions of the
language with comments, focusing on elements of the language rather than providing useful examples.
The analyzed system is assumed to be OTP, so in order to run the queries, first evaluate these calls:

xref:start(s).
xref:add release(s, code:root dir()).

xref:q(s, "(Fun) xref : Mod"). All functions of the xref module.

xref:q(s, "xref : Mod * X"). All exported functions of the xref module. The first operand of
the intersection operator * is implicitly converted to the more special type of the second operand.

xref:q(s, "(Mod) tools"). All modules of the tools application.

xref:q(s, ’"xref .*" : Mod’). All modules with a name beginning with xref .

xref:q(s, "# E|X"). Number of calls from exported functions.

xref:q(s, "XC||L"). All external calls to local functions.

xref:q(s, "XC*LC"). All calls that have both an external and a local version.

xref:q(s, "(LLin) (LC * XC)"). The lines where the local calls of the last example are made.

xref:q(s, "(XLin) (LC * XC)"). The lines where the external calls of the example before last are
made.

xref:q(s, "XC * (ME - strict ME)"). External calls within some module.

xref:q(s, "E|||kernel"). All calls within the kernel application.

xref:q(s, "closureE|kernel||kernel"). All direct and indirect calls within the kernel
application. Both the calling and the used functions of indirect calls are defined in modules of the

14 Tools

1.3: xref - The Cross Reference Tool

kernel application, but it is possible that some functions outside the kernel application are used by
indirect calls.

xref:q(s, "ftoolbar,debuggerg:Mod of ME"). A chain of module calls from toolbar to
debugger, if there is such a chain, otherwise false. The chain of calls is represented by a list of
modules, toolbar being the first element and debugger the last element.

xref:q(s, "closure E | toolbar:Mod || debugger:Mod"). All (in)direct calls from functions in
toolbar to functions in debugger.

xref:q(s, "(Fun) xref -> xref base"). All function calls from xref to xref base.

xref:q(s, "E * xref -> xref base"). Same interpretation as last expression.

xref:q(s, "E || xref base | xref"). Same interpretation as last expression.

xref:q(s, "E * [xref -> lists, xref base -> digraph]"). All function calls from xref to
lists, and all function calls from xref base to digraph.

xref:q(s, "E | [xref, xref base] || [lists, digraph]"). All function calls from xref and
xref base to lists and digraph.

xref:q(s, "components EE"). All strongly connected components of the Inter Call Graph. Each
component is a set of exported or unused local functions that call each other (in)directly.

xref:q(s, "X * digraph * range (closure (E | digraph) | (L * digraph))"). All exported
functions of the digraph module used (in)directly by some function in digraph.

xref:q(s, "L * yeccparser:Mod - range (closure (E |

yeccparser:Mod) | (X * yeccparser:Mod))"). The interpretation is left as an exercise.

1.3.4 Graph Analysis

The list representation of graphs [page 50] is used analyzing direct calls, while the digraph
representation is suited for analyzing indirect calls. The restriction operators (|, || and |||) are the
only operators that accept both representations. This means that in order to analyze indirect calls using
restriction, the closure operator (which creates the digraph representation of graphs) has to been
applied explicitly.

As an example of analyzing indirect calls, the following Erlang function tries to answer the question: if
we want to know which modules are used indirectly by some module(s), is it worth while using the
function graph [page 50] rather than the module graph? Recall that a module M1 is said to call a
module M2 if there is some function in M1 that calls some function in M2. It would be nice if we could
use the much smaller module graph, since it is available also in the light weight modules mode [page
49] of xref servers.

t(S) ->
{ok, _} = xref:q(S, "Eplus := closure E"),
{ok, Ms} = xref:q(S, "AM"),
Fun = fun(M, N) ->

Q = io_lib:format("# (Mod) (Eplus | ~p : Mod)", [M]),
{ok, N0} = xref:q(S, lists:flatten(Q)),
N + N0

end,
Sum = lists:foldl(Fun, 0, Ms),
ok = xref:forget(S, ’Eplus’),
{ok, Tot} = xref:q(S, "# (closure ME | AM)"),
100 * ((Tot - Sum) / Tot).

15Tools

Chapter 1: Tools User’s Guide

Comments on the code:

� We want to find the reduction of the closure of the function graph to modules. The direct
expression for doing that would be (Mod)(closureE|AM), but then we would have to represent
all of the transitive closure of E in memory. Instead the number of indirectly used modules is
found for each analyzed module, and the sum over all modules is calculated.

� A user variable is employed for holding the digraph representation of the function graph for use
in many queries. The reason is efficiency. As opposed to the = operator, the := operator saves a
value for subsequent analyses. Here might be the place to note that equal subexpressions within a
query are evaluated only once; = cannot be used for speeding things up.

� Eplus | ~p : Mod. The | operator converts the second operand to the type of the first operand.
In this case the module is converted to all functions of the module. It is necessary to assign a type
to the module (:Mod), otherwise modules like kernel would be converted to all functions of the
application with the same name; the most general constant is used in cases of ambiguity.

� Since we are only interested in a ratio, the unary operator # that counts the elements of the
operand is used. It cannot be applied to the digraph representation of graphs.

� We could find the size of the closure of the module graph with a loop similar to one used for the
function graph, but since the module graph is so much smaller, a more direct method is feasible.

When the Erlang function t/1 was applied to an xref server loaded with the current version of OTP, the
returned value was close to 84(percent). This means that the number of indirectly used modules is
approximately six times greater when using the module graph. So the answer to the above stated
question is that it is definitely worth while using the function graph for this particular analysis. Finally,
note that in the presence of unresolved calls, the graphs may be incomplete, which means that there
may be indirectly used modules that do not show up.

16 Tools

Tools Reference Manual

Short Summaries

� Erlang Module cover [page 23] – A Coverage Analysis Tool for Erlang

� Erlang Module eprof [page 27] – A Time Profiling Tool for Erlang

� Erlang Module fprof [page 29] – A Time Profiling Tool using trace to file for
minimal runtime performance impact.

� Erlang Module instrument [page 42] – Analysis and Utility Functions for
Instrumentation

� Erlang Module make [page 45] – A Make Utility for Erlang

� Erlang Module tags [page 47] – Generate Emacs TAGS file from Erlang source files

� Erlang Module xref [page 49] – A Cross Reference Tool for analyzing
dependencies between functions, modules, applications and releases.

cover

The following functions are exported:

� start() -> fok,Pidg | ferror,Reasong
[page 24] Start Cover.

� compile(ModFile) -> Result
[page 24] Compile a module for Cover analysis.

� compile(ModFile, Options) -> Result
[page 24] Compile a module for Cover analysis.

� compile module(ModFile) -> Result
[page 24] Compile a module for Cover analysis.

� compile module(ModFile, Options) -> Result
[page 24] Compile a module for Cover analysis.

� compile directory() -> [Result] | ferror,Reasong
[page 24] Compile all modules in a directory for Cover analysis.

� compile directory(Dir) -> [Result] | ferror,Reasong
[page 24] Compile all modules in a directory for Cover analysis.

� compile directory(Dir, Options) -> [Result] | ferror,Reasong
[page 24] Compile all modules in a directory for Cover analysis.

� analyse(Module) -> fok,Answerg | ferror,Errorg
[page 25] Analyse a Cover compiled module.

17Tools

Tools Reference Manual

� analyse(Module, Analysis) -> fok,Answerg | ferror,Errorg
[page 25] Analyse a Cover compiled module.

� analyse(Module, Level) -> fok,Answerg | ferror,Errorg
[page 25] Analyse a Cover compiled module.

� analyse(Module, Analysis, Level) -> fok,Answerg | ferror,Errorg
[page 25] Analyse a Cover compiled module.

� analyse to file(Module) ->
[page 25] Detailed coverage analysis of a Cover compiled module.

� analyse to file(Module, OutFile) -> fok,OutFileg | ferror,Errorg
[page 25] Detailed coverage analysis of a Cover compiled module.

� modules() -> [Module]
[page 26] Return all Cover compiled modules.

� is compiled(Module) -> ffile,Fileg | false
[page 26] Check if a module is Cover compiled.

� reset(Module) -> ok
[page 26] Reset coverage data for Cover compiled modules.

� reset() -> ok
[page 26] Reset coverage data for Cover compiled modules.

� stop() -> ok
[page 26] Stop Cover.

eprof

The following functions are exported:

� start() -> fok,Pidg | ferror,Reasong
[page 27] Start Eprof.

� start profiling(Rootset) -> profiling | error
[page 27] Start profiling.

� profile(Rootset) -> profiling | error
[page 27] Start profiling.

� stop profiling() -> profiling stopped | profiling already stopped
[page 27] Stop profiling.

� profile(Rootset,Fun) -> fok,Valueg | ferror,Reasong | error
[page 27] Start profiling.

� profile(Rootset,Module,Function,Args) -> fok,Valueg | ferror,Reasong
| error
[page 27] Start profiling.

� analyse()
[page 28] Display profiling results per process.

� total analyse()
[page 28] Display profiling results per function call.

� log(File) -> ok
[page 28] Activate logging of eprof printouts.

� stop() -> stopped
[page 28] Stop Eprof.

18 Tools

Tools Reference Manual

fprof

The following functions are exported:

� start() -> fok, Pidg | ferror, falready started, Pidgg
[page 30] Starts the fprofserver.

� stop() -> ok
[page 30] Same as stop(normal).

� stop(Reason) -> ok
[page 30] Stops the fprofserver.

� apply(Func, Args) -> term()
[page 30] Same as apply(Func, Args, []).

� apply(Module, Function, Args) -> term()
[page 30] Same as apply(fModule, Functiong, Args, []).

� apply(Func, Args, OptionList) -> term()
[page 30] Calls erlang:apply(Func, Args) surrounded by trace([start |
OptionList]) and trace(stop).

� apply(Module, Function, Args, OptionList) -> term()
[page 31] Same as apply(fModule, Functiong, Args, OptionList).

� trace(start, Filename) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong
[page 31] Same as trace([start, ffile, Filenameg]).

� trace(verbose, Filename) -> ok | ferror, Reasong | f’EXIT’,
ServerPid, Reasong
[page 31] Same as trace([start, verbose, ffile, Filenameg]).

� trace(OptionName, OptionValue) -> ok | ferror, Reasong | f’EXIT’,
ServerPid, Reasong
[page 31] Same as trace([fOptionName, OptionValueg]).

� trace(verbose) -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong
[page 32] Same as trace([start, verbose]).

� trace(OptionName) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong
[page 32] Same as trace([OptionName]).

� trace(fOptionName, OptionValueg) -> ok | ferror, Reasong | f’EXIT’,
ServerPid, Reasong
[page 31] Same as trace([fOptionName, OptionValueg]).

� trace([Option]) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong
[page 32] Starts or stops tracing.

� profile() -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong
[page 33] Same as profile([]).

� profile(OptionName, OptionValue) -> ok | ferror, Reasong | f’EXIT’,
ServerPid, Reasong
[page 33] Same as profile([fOptionName, OptionValueg]).

� profile(OptionName) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong
[page 33] Same as profile([OptionName]).

19Tools

Tools Reference Manual

� profile(fOptionName, OptionValueg) -> ok | ferror, Reasong |
f’EXIT’, ServerPid, Reasong
[page 33] Same as profile([fOptionName, OptionValueg]).

� profile([Option]) -> ok | fok, Tracerg | ferror, Reasong | f’EXIT’,
ServerPid, Reasong
[page 33] Compiles a trace into raw profile data held by the fprofserver.

� analyse() -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong
[page 34] Same as analyse([]).

� analyse(OptionName, OptionValue) -> ok | ferror, Reasong | f’EXIT’,
ServerPid, Reasong
[page 34] Same as analyse([fOptionName, OptionValueg]).

� analyse(OptionName) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong
[page 34] Same as analyse([OptionName]).

� analyse(fOptionName, OptionValueg) -> ok | ferror, Reasong |
f’EXIT’, ServerPid, Reasong
[page 34] Same as analyse([fOptionName, OptionValueg]).

� analyse([Option]) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong
[page 34] Analyses raw profile data in the fprofserver.

instrument

The following functions are exported:

� holes(AllocList) -> ok
[page 43] Print out the sizes of unused memory blocks

� mem limits(AllocList) -> fLow, Highg
[page 43] Return lowest and highest memory address used

� memory data() -> AllocList
[page 43] Return current memory allocation list

� read memory data(File) -> fok, AllocListg | ferror, Reasong
[page 43] Read memory allocation list

� sort(AllocList) -> AllocList
[page 43] Sort a memory allocation list

� store memory data(File) -> ok
[page 44] Store the current memory allocation list on a file

� sum blocks(AllocList) -> int()
[page 44] Return the total amount of memory used

� type string(Type) -> string()
[page 44] Translate a memory block type number to a string

make

The following functions are exported:

� all() -> up to date | error
[page 45] Compile a set of modules.

20 Tools

Tools Reference Manual

� all(Options) -> up to date | error
[page 45] Compile a set of modules.

� files(ModFiles) -> up to date | error
[page 45] Compile a set of modules.

� files(ModFiles, Options) -> up to date | error
[page 46] Compile a set of modules.

tags

The following functions are exported:

� file(File [, Options])
[page 47] Create a TAGS file for the file File.

� files(FileList [, Options])
[page 47] Create a TAGS file for the files in the list FileList.

� dir(Dir [, Options])
[page 47] Create a TAGS file for all files in directory Dir.

� dirs(DirList [, Options])
[page 47] Create a TAGS file for all files in any directory in DirList.

� subdir(Dir [, Options])
[page 47] Descend recursively down the directory Dir and create a TAGS file based
on all files found.

� subdirs(DirList [, Options])
[page 47] Descend recursively down all the directories in DirList and create a
TAGS file based on all files found.

� root([Options])
[page 47] Create a TAGS file covering all files in the Erlang distribution.

xref

The following functions are exported:

� add application(Xref, Directory [, Options]) -> fok, application()g
| Error
[page 57] Add the modules of an application.

� add directory(Xref, Directory [, Options]) -> fok, Modulesg | Error
[page 57] Add the modules in a directory.

� add module(Xref, File [, Options]) -> fok, module()g | Error
[page 58] Add a module.

� add release(Xref, Directory [, Options]) -> fok, release()g | Error
[page 58] Add the modules of a release.

� analyze(Xref, Analysis [, Options]) -> fok, Answerg | Error
[page 58] Evaluate a predefined analysis.

� d(Directory) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
[page 59] Check the modules in a directory using the code path.

� forget(Xref) -> ok
[page 60] Remove user variables and their values.

21Tools

Tools Reference Manual

� forget(Xref, Variables) -> ok | Error
[page 60] Remove user variables and their values.

� format error(Error) -> character list()
[page 60] Return an English description of an Xref error reply.

� get default(Xref) -> [fOption, Valueg]
[page 60] Return the default values of options.

� get default(Xref, Option) -> fok, Valueg | Error
[page 60] Return the default values of options.

� get library path(Xref) -> fok, LibraryPathg
[page 60] Return the library path.

� info(Xref) -> [Info]
[page 61] Return information about an Xref server.

� info(Xref, Category) -> [fItem, [Info]g]
[page 61] Return information about an Xref server.

� info(Xref, Category, Items) -> [fItem, [Info]g]
[page 61] Return information about an Xref server.

� m(Module) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
[page 63] Check a module using the code path.

� m(File) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
[page 63] Check a module using the code path.

� q(Xref, Query [, Options]) -> fok, Answerg | Error
[page 64] Evaluate a query.

� remove application(Xref, Applications) -> ok | Error
[page 65] Remove applications and their modules.

� remove module(Xref, Modules) -> ok | Error
[page 65] Remove analyzed modules.

� remove release(Xref, Releases) -> ok | Error
[page 65] Remove releases and their applications and modules.

� replace application(Xref, Application, Directory [, Options]) ->
fok, application()g | Error
[page 65] Replace an application’s modules.

� replace module(Xref, Module, File [, Options]) -> fok, module()g |
Error
[page 66] Replace an analyzed module.

� set default(Xref, Option, Value) -> fok, OldValueg | Error
[page 66] Set the default values of options.

� set default(Xref, OptionValues) -> ok | Error
[page 66] Set the default values of options.

� set library path(Xref, LibraryPath [, Options]) -> ok | Error
[page 67] Set the library path and finds the library modules.

� start(Xref [, Options]) -> Return
[page 67] Create an xref server.

� stop(Xref)
[page 67] Delete an xref server.

� update(Xref [, Options]) -> fok, Modulesg | Error
[page 67] Replace newly compiled analyzed modules.

� variables(Xref [, Options]) -> fok, [VariableInfo]g
[page 68] Return the names of variables.

22 Tools

Tools Reference Manual cover

cover
Erlang Module

The module cover provides a set of functions for coverage analysis of Erlang programs,
counting how many times each executable line of code is executed when a program is
run.
An executable line contains an Erlang expression such as a matching or a function call.
A blank line or a line containing a comment, function head or pattern in a case- or
receive statement is not executable.

Coverage analysis can be used to verify test cases, making sure all relevant code is
covered, and may also be helpful when looking for bottlenecks in the code.

Before any analysis can take place, the involved modules must be Cover compiled. This
means that some extra information is added to the module before it is compiled into a
binary which then is loaded. The source file of the module is not affected and no .beam
file is created.

Each time a function in a Cover compiled module is called, information about the call is
added to an internal database of Cover. The coverage analysis is performed by
examining the contents of the Cover database. The output Answer is determined by
two parameters, Level and Analysis.

� Level = module

Answer = fModule,Valueg, where Module is the module name.

� Level = function

Answer = [fFunction,Valueg], one tuple for each function in the module. A
function is specified by its module name M, function name F and arity A as a tuple
fM,F,Ag.

� Level = clause

Answer = [fClause,Valueg], one tuple for each clause in the module. A clause is
specified by its module name M, function name F, arity A and position in the
function definition C as a tuple fM,F,A,Cg.

� Level = line

Answer = [fLine,Valueg], one tuple for each executable line in the module. A
line is specified by its module name M and line number in the source file N as a
tuple fM,Ng.

� Analysis = coverage

Value = fCov,NotCovg where Cov is the number of executable lines in the
module, function, clause or line that have been executed at least once and NotCov
is the number of executable lines that have not been executed.

� Analysis = calls

Value = Calls which is the number of times the module, function, or clause has
been called. In the case of line level analysis, Calls is the number of times the line
has been executed.

23Tools

cover Tools Reference Manual

Exports

start() -> fok,Pidg | ferror,Reasong

Types:

� Pid = pid()
� Reason = falready started,Pidg

Starts the Cover server which owns the Cover internal database. This function is called
automatically by the other functions in the module.

compile(ModFile) -> Result

compile(ModFile, Options) -> Result

compile module(ModFile) -> Result

compile module(ModFile, Options) -> Result

Types:

� ModFile = Module | File
� Module = atom()
� File = string()
� Options = [Option]
� Option = fi,Dirg | fd,Macrog | fd,Macro,Valueg

See compile:file/2.

� Result = fok,Moduleg | ferror,Fileg

Compiles a module for Cover analysis. The module is given by its module name Module
or by its file name File. The .erl extension may be omitted. If the module is located
in another directory, the path has to be specified.

Options is a list of compiler options which defaults to []. Only options defining include
file directories and macros are passed to compile:file/2, everything else is ignored.

If the module is successfully Cover compiled, the function returns fok,Moduleg.
Otherwise the function returns ferror,Fileg. Errors and warnings are printed as they
occur.

Note that the internal database is (re-)initiated during the compilation, meaning any
previously collected coverage data for the module will be lost.

compile directory() -> [Result] | ferror,Reasong

compile directory(Dir) -> [Result] | ferror,Reasong

compile directory(Dir, Options) -> [Result] | ferror,Reasong

Types:

� Dir = string()
� Options = [Option]

See compile module/1,2

� Result = fok,Moduleg | ferror,Fileg
See compile module/1,2

� Reason = eacces | enoent

24 Tools

Tools Reference Manual cover

Compiles all modules (.erl files) in a directory Dir for Cover analysis the same way as
compile module/1,2 and returns a list with the return values.

Dir defaults to the current working directory.

The function returns ferror,eaccesg if the directory is not readable or
ferror,enoentg if the directory does not exist.

analyse(Module) -> fok,Answerg | ferror,Errorg

analyse(Module, Analysis) -> fok,Answerg | ferror,Errorg

analyse(Module, Level) -> fok,Answerg | ferror,Errorg

analyse(Module, Analysis, Level) -> fok,Answerg | ferror,Errorg

Types:

� Module = atom()
� Analysis = coverage | calls
� Level = line | clause | function | module
� Answer = fModule,Valueg | [fItem,Valueg]
� Item = Line | Clause | Function
� Line = fM,Ng

� Clause = fM,F,A,Cg

� Function = fM,F,Ag

� M = F = atom()
� N = A = C = integer()
� Value = fCov,NotCovg | Calls
� Cov = NotCov = Calls = integer()
� Error = fnot cover compiled,Moduleg

Performs analysis of a Cover compiled module Module, as specified by Analysis and
Level (see above), by examining the contents of the internal database.

Analysis defaults to coverage and Level defaults to function.

If Module is not Cover compiled, the function returns
ferror,fnot cover compiled,Modulegg.

analyse to file(Module) ->

analyse to file(Module, OutFile) -> fok,OutFileg | ferror,Errorg

Types:

� Module = atom()
� OutFile = string()
� Error = fnot cover compiled,Moduleg | ffile,File,Reasong
� File = string()
� Reason = term()

25Tools

cover Tools Reference Manual

Makes a copy OutFile of the source file for a module Module, where it for each
executable line is specified how many times it has been executed.

The output file OutFile defaults to Module.COVER.out.

If Module is not Cover compiled, the function returns
ferror,fnot cover compiled,Modulegg.

If the source file and/or the output file cannot be opened using file:open/2, the
function returns ferror,ffile,File,Reasonggwhere File is the file name and
Reason is the error reason.

modules() -> [Module]

Types:

� Module = atom()

Returns a list with all modules that are currently Cover compiled.

is compiled(Module) -> ffile,Fileg | false

Types:

� Module = atom()
� Beam = string()

Returns ffile,Fileg if the module Module is Cover compiled, or false otherwise.
File is the .erl file used by cover:compile module/1,2.

reset(Module) -> ok

reset() -> ok

Types:

� Module = atom()

Resets all coverage data for a Cover compiled module Module in the Cover database. If
the argument is omitted, the coverage data will be reset for all modules known by
Cover.

If Module is not Cover compiled, the function returns
ferror,fnot cover compiled,Modulegg.

stop() -> ok

Stops the Cover server and unloads all Cover compiled code.

SEE ALSO

code(3), compile(3)

26 Tools

Tools Reference Manual eprof

eprof
Erlang Module

The module eprof provides a set of functions for time profiling of Erlang programs to
find out how the execution time is used. The profiling is done using the Erlang trace
BIFs. Tracing of local function calls for a specfied set of processes is enabled when
profiling is begun, and disabled when profiling is stopped.

When using Eprof, expect a significant slowdown in program execution, in most cases at
least 100 percent.

Exports

start() -> fok,Pidg | ferror,Reasong

Types:

� Pid = pid()
� Reason = falready started,Pidg

Starts the Eprof server which owns the Eprof internal database.

start profiling(Rootset) -> profiling | error

profile(Rootset) -> profiling | error

Types:

� Rootset = [atom() | pid()]

Starts profiling for the processes in Rootset (and any new processes spawned from
them). Information about activity in any profiled process is stored in the Eprof database.

Rootset is a list of pids and registered names.

The function returns profiling if tracing could be enabled for all processes in Rootset,
or error otherwise.

stop profiling() -> profiling stopped | profiling already stopped

Stops profiling started with start profiling/1 or profile/1.

profile(Rootset,Fun) -> fok,Valueg | ferror,Reasong | error

profile(Rootset,Module,Function,Args) -> fok,Valueg | ferror,Reasong | error

Types:

� Rootset = [atom() | pid()]
� Fun = fun() -> term()
� Module = Function = atom()

27Tools

eprof Tools Reference Manual

� Args = [term()]
� Value = Reason = term()

This function first spawns a process P which evaluates Fun() or
apply(Module,Function,Args). Then, it starts profiling for P and the processes in
Rootset (and any new processes spawned from them). Information about activity in
any profiled process is stored in the Eprof database.

Rootset is a list of pids and registered names.

If tracing could be enabled for P and all processes in Rootset, the function returns
fok,Valueg when Fun()/apply returns with the value Value, or ferror,Reasong if
Fun()/apply fails with exit reason Reason. Otherwise it returns error immediately.

The programmer must ensure that the function given as argument is truly synchronous
and that no work continues after the function has returned a value.

analyse()

Call this function when profiling has been stopped to display the results per process,
that is:

� how much time has been used by each process, and

� in which function calls this time has been spent.

Time is shown as percentage of total time, not as absolute time.

total analyse()

Call this function when profiling has been stopped to display the results per function
call, that is in which function calls the time has been spent.

Time is shown as percentage of total time, not as absolute time.

log(File) -> ok

Types:

� File = atom() | string()

This function ensures that the results displayed by analyse/0 and total analyse/0 are
printed both to the file File and the screen.

stop() -> stopped

Stops the Eprof server.

28 Tools

Tools Reference Manual fprof

fprof
Erlang Module

This module is used to profile a program to find out how the execution time is used.
Trace to file is used to minimize runtime performance impact.

The fprof module uses tracing to collect profiling data, hence there is no need for
special compilation of any module to be profiled. When it starts tracing, fprof will
erase all previous tracing in the node and set the necessary trace flags on the profiling
target processes as well as local call trace on all functions in all loaded modules and all
modules to be loaded. fprof erases all tracing in the node when it stops tracing.

fprof presents both own time i.e how much time a function has used for its own
execution, and accumulated time i.e including called functions. All presented times are
collected using trace timestamps. fprof tries to collect cpu time timestamps, if the host
machine OS supports it. Therefore the times may be wallclock times and OS
scheduling will randomly strike all called functions in a presumably fair way.

If, however, the profiling time is short, and the host machine OS does not support high
resolution cpu time measurements, some few OS schedulings may show up as ridicously
long execution times for functions doing practically nothing. An example of a function
more or less just composing a tuple in about 100 times the normal execution time has
been seen, and when the tracing was repeated, the execution time became normal.

Profiling is essentially done in 3 steps:

1 Tracing; to file, as mentioned in the previous paragraph. The trace contains entries
for function calls, returns to function, process scheduling, other process related
(spawn, etc) events, and garbage collection. All trace entries are timestamped.

2 Profiling; the trace file is read, the execution call stack is simulated, and raw profile
data is calculated from the simulated call stack and the trace timestamps. The
profile data is stored in the fprof server state. During this step the trace data may
be dumped in text format to file or console.

3 Analysing; the raw profile data is sorted, filtered and dumped in text format either to
file or console. The text format intended to be both readable for a human reader,
as well as parsable with the standard erlang parsing tools.

Since fprof uses trace to file, the runtime performance degradation is minimized, but
still far from negligible, especially for programs that use the filesystem heavily by
themselves. Where you place the trace file is also important, e.g on Solaris /tmp is
usually a good choice since it is essentially a RAM disk, while any NFS (network)
mounted disk is a bad idea.

fprof can also skip the file step and trace to a tracer process that does the profiling in
runtime.

29Tools

fprof Tools Reference Manual

Exports

start() -> fok, Pidg | ferror, falready started, Pidgg

Types:

� Pid = pid()

Starts the fprofserver.

Note that it seldom needs to be started explicitly since it is automatically started by the
functions that need a running server.

stop() -> ok

Same as stop(normal).

stop(Reason) -> ok

Types:

� Reason = term()

Stops the fprofserver.

The supplied Reason becomes the exit reason for the server process. Default Any
Reason other than kill sends a request to the server and waits for it to clean up, reply
and exit. If Reason is kill, the server is bluntly killed.

If the fprofserver is not running, this function returns immediately with the same
return value.

Note:
When the fprofserver is stopped the collected raw profile data is lost.

apply(Func, Args) -> term()

Types:

� Func = function() | fModule, Functiong
� Args = [term()]
� Module = atom()
� Function = atom()

Same as apply(Func, Args, []).

apply(Module, Function, Args) -> term()

Types:

� Args = [term()]
� Module = atom()
� Function = atom()

Same as apply(fModule, Functiong, Args, []).

apply(Func, Args, OptionList) -> term()

30 Tools

Tools Reference Manual fprof

Types:

� Func = function() | fModule, Functiong
� Args = [term()]
� OptionList = [Option]
� Module = atom()
� Function = atom()
� Option = continue | start | fprocs, PidListg | TraceStartOption

Calls erlang:apply(Func, Args) surrounded by trace([start, ...]) and
trace(stop).

Some effort is made to keep the trace clean from unnecessary trace messages; tracing is
started and stopped from a spawned process while the erlang:apply/2 call is made in
the current process, only surrounded by receive and send statements towards the trace
starting process. The trace starting process exits when not needed any more.

The TraceStartOption is any option allowed for trace/1. The options [start,
fprocs, [self() | PidList]g | OptList] are given to trace/1, where OptList is
OptionList with continue, start and fprocs, g options removed.

The continue option inhibits the call to trace(stop) and leaves it up to the caller to
stop tracing at a suitable time.

apply(Module, Function, Args, OptionList) -> term()

Types:

� Module = atom()
� Function = atom()
� Args = [term()]

Same as apply(fModule, Functiong, Args, OptionList).

OptionList is an option list allowed for apply/3.

trace(start, Filename) -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� Reason = term()

Same as trace([start, ffile, Filenameg]).

trace(verbose, Filename) -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� Reason = term()

Same as trace([start, verbose, ffile, Filenameg]).

trace(OptionName, OptionValue) -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� OptionName = atom()
� OptionValue = term()
� Reason = term()

Same as trace([fOptionName, OptionValueg]).

31Tools

fprof Tools Reference Manual

trace(verbose) -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� Reason = term()

Same as trace([start, verbose]).

trace(OptionName) -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� OptionName = atom()
� Reason = term()

Same as trace([OptionName]).

trace(fOptionName, OptionValueg) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong

Types:

� OptionName = atom()
� OptionValue = term()
� Reason = term()

Same as trace([fOptionName, OptionValueg]).

trace([Option]) -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� Option = start | stop | fprocs, PidSpecg | fprocs, [PidSpec]g | verbose | fverbose,
bool()g | file | ffile, Filenameg | ftracer, Tracerg

� PidSpec = pid() | atom()
� Tracer = pid() | port()
� Reason = term()

Starts or stops tracing.

PidSpec and Tracer are used in calls to erlang:trace(PidSpec, true, [ftracer,
Tracerg | Flags]), and Filename is used to call dbg:trace port(file, Filename).
Please see the appropriate documentation.

Option description:

stop Stops a running fprof trace and clears all tracing from the node. Either option
stop or start must be specified, but not both.

start Clears all tracing from the node and starts a new fprof trace. Either option
start or stop must be specified, but not both.

verbose | fverbose, bool()g The options verbose or fverbose, trueg adds some
trace flags that fprof does not need, but that may be interesting for general
debugging purposes. This option is only allowed with the start option.

cpu time | fcpu time, bool()g The options cpu time or fcpu time, true>makes
the timestamps in the trace be in CPU time instead of wallclock time which is the
default. This option is only allowed with the start option.

32 Tools

Tools Reference Manual fprof

fprocs, PidSpecg | fprocs, [PidSpec]g Specifies which processes that shall be
traced. If this option is not given, the calling process is traced. All processes
spawned by the traced processes are also traced. This option is only allowed with
the start option.

file | ffile, Filenameg Specifies the filename of the trace. If the option file is
given, or none of these options are given, the file "fprof.trace" is used. This
option is only allowed with the start option, but not with the ftracer, Tracerg
option.

ftracer, Tracerg Specifies that trace to process or port shall be done instead of trace
to file. This option is only allowed with the start option, but not with the ffile,
Filenameg option.

profile() -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� Reason = term()

Same as profile([]).

profile(OptionName, OptionValue) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong

Types:

� OptionName = atom()
� OptionValue = term()
� Reason = term()

Same as profile([fOptionName, OptionValueg]).

profile(OptionName) -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� OptionName = atom()
� Reason = term()

Same as profile([OptionName]).

profile(fOptionName, OptionValueg) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong

Types:

� OptionName = atom()
� OptionValue = term()
� Reason = term()

Same as profile([fOptionName, OptionValueg]).

profile([Option]) -> ok | fok, Tracerg | ferror, Reasong | f’EXIT’, ServerPid,
Reasong

Types:

� Option = file | ffile, Filenameg | dump | fdump, Dumpg | append | start | stop
� Dump = pid() | Dumpfile | []

33Tools

fprof Tools Reference Manual

� Tracer = pid()
� Reason = term()

Compiles a trace into raw profile data held by the fprofserver.

Dumpfile is used to call file:open/2, and Filename is used to call
dbg:trace port(file, Filename). Please see the appropriate documentation.

Option description:

file | ffile, Filenameg Reads the file Filename and creates raw profile data that is
stored in RAM by the fprofserver. If the option file is given, or none of these
options are given, the file "fprof.trace" is read. The call will return when the
whole trace has been read with the return value ok if successful. This option is not
allowed with the start or stop options.

dump | fdump, Dumpg Specifies the destination for the trace text dump. If this option
is not given, no dump is generated, if it is dump the destination will be the caller’s
group leader, otherwise the destination Dump is either the pid of an I/O device or a
filename. And, finally, if the filename is [] - "fprof.dump" is used instead. This
option is not allowed with the stop option.

append Causes the trace text dump to be appended to the destination file. This option
is only allowed with the fdump, Dumpfileg option.

start Starts a tracer process that profiles trace data in runtime. The call will return
immediately with the return value fok, Tracerg if successful. This option is not
allowed with the stop, file or ffile, Filenameg options.

stop Stops the tracer process that profiles trace data in runtime. The return value will
be value ok if successful. This option is not allowed with the start, file or
ffile, Filenameg options.

analyse() -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� Reason = term()

Same as analyse([]).

analyse(OptionName, OptionValue) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong

Types:

� OptionName = atom()
� OptionValue = term()
� Reason = term()

Same as analyse([fOptionName, OptionValueg]).

analyse(OptionName) -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� OptionName = atom()
� Reason = term()

Same as analyse([OptionName]).

34 Tools

Tools Reference Manual fprof

analyse(fOptionName, OptionValueg) -> ok | ferror, Reasong | f’EXIT’, ServerPid,
Reasong

Types:

� OptionName = atom()
� OptionValue = term()
� Reason = term()

Same as analyse([fOptionName, OptionValueg]).

analyse([Option]) -> ok | ferror, Reasong | f’EXIT’, ServerPid, Reasong

Types:

� Option = dest | fdest, Destg | append | fcols, Colsg | callers | fcallers, bool()g |
no callers | fsort, SortSpecg | totals | ftotals, bool()g | details | fdetails, bool()g |
no details

� Dest = pid() | Destfile
� Cols = integer() >= 80
� SortSpec = acc | own
� Reason = term()

Analyses raw profile data in the fprofserver. If called while there is no raw profile data
available, ferror, no profileg is returned.

Destfile is used to call file:open/2. Please see the appropriate documentation.

Option description:

dest | fdest, Destg Specifies the destination for the analysis. If this option is not
given or it is dest, the destination will be the caller’s group leader, otherwise the
destination Dest is either the pid() of an I/O device or a filename. And, finally, if
the filename is [] - "fprof.analysis" is used instead.

append Causes the analysis to be appended to the destination file. This option is only
allowed with the fdest, Destfileg option.

fcols, Colsg Specifies the number of columns in the analysis text. If this option is
not given the number of columns is set to 80.

callers | fcallers, trueg Prints callers and called information in the analysis. This
is the default.

fcallers, falseg | no callers Suppresses the printing of callers and called
information in the analysis.

fsort, SortSpecg Specifies if the analysis should be sorted according to the ACC
column, which is the default, or the OWN column. See Analysis Format [page 36]
below.

totals | ftotals, trueg Includes a section containing call statistics for all calls
regardless of process, in the analysis.

ftotals, falseg Supresses the totals section in the analysis, which is the default.

details | fdetails, trueg Prints call statistics for each process in the analysis. This
is the default.

fdetails, falseg | no details Suppresses the call statistics for each process from
the analysis.

35Tools

fprof Tools Reference Manual

Analysis format

This section describes the output format of the analyse command. See analyse/0 [page
34].

The format is parsable with the standard Erlang parsing tools erl scan and erl parse,
file:consult/1 or io:read/2. The parse format is not explained here - it should be
easy for the interested to try it out. Note that some flags to analyse/1 will affect the
format.

The following example was run on OTP/R8 on Solaris 8, all OTP internals in this
example are very version dependent.

As an example, we will use the following function, that you may recogise as a slightly
modified benchmark function from the manpage file(3):

-module(foo).
-export([create_file_slow/2]).

create_file_slow(Name, N) when integer(N), N >= 0 ->
{ok, FD} =

file:open(Name, [raw, write, delayed_write, binary]),
if N > 256 ->

ok = file:write(FD,
lists:map(fun (X) -> <<X:32/unsigned>> end,
lists:seq(0, 255))),

ok = create_file_slow(FD, 256, N);
true ->

ok = create_file_slow(FD, 0, N)
end,
ok = file:close(FD).

create_file_slow(FD, M, M) ->
ok;

create_file_slow(FD, M, N) ->
ok = file:write(FD, <<M:32/unsigned>>),
create_file_slow(FD, M+1, N).

Let us have a look at the printout after running:

1> fprof:apply(foo, create file slow, [junk, 1024]).
2> fprof:profile().
3> fprof:analyse().

The printout starts with:

%% Analysis results:
f analysis options,
[fcallers, trueg,
fsort, accg,
ftotals, falseg,
fdetails, trueg]g.

% CNT ACC OWN
[f totals, 9627, 1691.119, 1659.074g]. %%%

36 Tools

Tools Reference Manual fprof

The CNT column shows the total number of function calls that was found in the trace.
In the ACC column is the total time of the trace from first timestamp to last. And in
the OWN column is the sum of the execution time in functions found in the trace, not
including called functions. In this case it is very close to the ACC time since the
emulator had practically nothing else to do than to execute our test program.

All time values in the printout are in milliseconds.

The printout continues:

% CNT ACC OWN
[f "<0.28.0>", 9627,undefined, 1659.074g]. %%

This is the printout header of one process. The printout contains only this one process
since we did fprof:apply/3 which traces only the current process. Therefore the CNT
and OWN columns perfectly matches the totals above. The ACC column is undefined
since summing the ACC times of all calls in the process makes no sense - you would get
something like the ACC value from totals above multiplied by the average depth of the
call stack, or something.

All paragraphs up to the next process header only concerns function calls within this
process.

Now we come to something more interesting:

f[fundefined, 0, 1691.076, 0.030g],
f ffprof,apply start stop,4g, 0, 1691.076, 0.030g, %
[fffoo,create file slow,2g, 1, 1691.046, 0.103g,
fsuspend, 1, 0.000, 0.000g]g.

f[fffprof,apply start stop,4g, 1, 1691.046, 0.103g],
f ffoo,create file slow,2g, 1, 1691.046, 0.103g, %
[fffile,close,1g, 1, 1398.873, 0.019g,
fffoo,create file slow,3g, 1, 249.678, 0.029g,
fffile,open,2g, 1, 20.778, 0.055g,
fflists,map,2g, 1, 16.590, 0.043g,
fflists,seq,2g, 1, 4.708, 0.017g,
fffile,write,2g, 1, 0.316, 0.021g]g.

The printout consists of one paragraph per called function. The function marked with
’%’ is the one the paragraph concerns - foo:create file slow/2. Above the marked
function are the calling functions - those that has called the marked, and below are
those called by the marked function.

The paragraphs are per default sorted in decreasing order of the ACC column for the
marked function. The calling list and called list within one paragraph are also per
default sorted in decreasing order of their ACC column.

The columns are: CNT - the number of times the funcion has been called, ACC - the
time spent in the function including called functions, and OWN - the time spent in the
function not including called functions.

The rows for the calling functions contain statistics for the marked function with the
constraint that only the occasions when a call was made from the row’s function to the
marked function are accounted for.

The row for the marked function simply contains the sum of all calling rows.

37Tools

fprof Tools Reference Manual

The rows for the called functions contains statistics for the row’s function with the
constraint that only the occasions when a call was made from the marked to the row’s
function are accounted for.

So, we see that foo:create file slow/2 used very little time for its own execution. It
spent most of its time in file:close/1. The function foo:create file slow/3 that
writes 3/4 of the file contents is the second biggest time thief.

We also see that the call to file:write/2 that writes 1/4 of the file contents takes very
little time in itself. What takes time is to build the data (lists:seq/2 and
lists:map/2).

The function ’undefined’ that has called fprof:apply start stop/4 is an unknown
function because that call was not recorded in the trace. It was only recorded that the
execution returned from fprof:apply start stop/4 to some other function above in
the call stack, or that the process exited from there.

Let us continue down the printout to find:

f[fffoo,create file slow,2g, 1, 249.678, 0.029g,
fffoo,create file slow,3g, 768, 0.000, 23.294g],

f ffoo,create file slow,3g, 769, 249.678, 23.323g, %
[fffile,write,2g, 768, 220.314, 14.539g,
fsuspend, 57, 6.041, 0.000g,
fffoo,create file slow,3g, 768, 0.000, 23.294g]g.

If you compare with the code you will see there also that foo:create file slow/3 was
called only from foo:create file slow/2 and itself, and called only file:write/2,
note the number of calls to file:write/2. But here we see that suspend was called a
few times. This is a pseudo function that indicates that the process was suspended while
executing in foo:create file slow/3, and since there is no receive or
erlang:yield/0 in the code, it must be Erlang scheduling suspensions, or the trace file
driver compensating for large file write operations (these are regarded as a shedule out
followed by a shedule in to the same process).

Let us find the suspend entry:

f[fffile,write,2g, 53, 6.281, 0.000g,
fffoo,create file slow,3g, 57, 6.041, 0.000g,
ffprim file,drv command,4g, 50, 4.582, 0.000g,
ffprim file,drv get response,1g, 34, 2.986, 0.000g,
fflists,map,2g, 10, 2.104, 0.000g,
ffprim file,write,2g, 17, 1.852, 0.000g,
fferlang,port command,2g, 15, 1.713, 0.000g,
ffprim file,drv command,2g, 22, 1.482, 0.000g,
ffprim file,translate response,2g, 11, 1.441, 0.000g,
ffprim file,’-drv command/2-fun-0-’,1g, 15, 1.340, 0.000g,
fflists,seq,4g, 3, 0.880, 0.000g,
fffoo,’-create file slow/2-fun-0-’,1g, 5, 0.523, 0.000g,
fferlang,bump reductions,1g, 4, 0.503, 0.000g,
ffprim file,open int setopts,3g, 1, 0.165, 0.000g,
ffprim file,i32,4g, 1, 0.109, 0.000g,
fffprof,apply start stop,4g, 1, 0.000, 0.000g],

f suspend, 299, 32.002, 0.000g, %
[]g.

38 Tools

Tools Reference Manual fprof

We find no particulary long suspend times, so no function seems to have waited in a
receive statement. Actually, prim file:drv command/4 contains a receive statement,
but in this test program, the message lies in the process receive buffer when the receive
statement is entered. We also see that the total suspend time for the test run is small.

The suspend pseudo function has got an OWN time of zero. This is to prevent the
process total OWN time from including time in suspension. Whether suspend time is
really ACC or OWN time is more of a philosophical question.

Now we look at another interesting pesudo function, garbage collect:

f[ffprim file,drv command,4g, 25, 0.873, 0.873g,
ffprim file,write,2g, 16, 0.692, 0.692g,
fflists,map,2g, 2, 0.195, 0.195g],

f garbage collect, 43, 1.760, 1.760g, %
[]g.

Here we see that no function distinguishes itself considerably, which is very normal.

The garbage collect pseudo function has not got an OWN time of zero like suspend,
instead it is equal to the ACC time.

Garbage collect often occurs while a process is suspended, but fprof hides this fact by
pretending that the suspended function was first unsuspended and then garbage
collected. Otherwise the printout would show garbage collect being called from
suspend but not not which function that might have caused the garbage collection.

Let us now get back to the test code:

f[fffoo,create file slow,3g, 768, 220.314, 14.539g,
fffoo,create file slow,2g, 1, 0.316, 0.021g],

f ffile,write,2g, 769, 220.630, 14.560g, %
[ffprim file,write,2g, 769, 199.789, 22.573g,
fsuspend, 53, 6.281, 0.000g]g.

Not unexpectedly, we see that file:write/2 was called from
foo:create file slow/3 and foo:create file slow/2. The number of calls in each
case as well as the used time are also just confirms the previous results.

We see that file:write/2 only calls prim file:write/2, but let us refrain from
digging into the internals of the kernel application.

But, if we nevertheless do dig down we find the call to the linked in driver that does the
file operations towards the host operating system:

f[ffprim file,drv command,4g, 772, 1458.356, 1456.643g],
f ferlang,port command,2g, 772, 1458.356, 1456.643g, %
[fsuspend, 15, 1.713, 0.000g]g.

This is 86 % of the total run time, and as we saw before it is the close operation the
absolutely biggest contributor. We find a comparision ratio a little bit up in the call
stack:

39Tools

fprof Tools Reference Manual

f[ffprim file,close,1g, 1, 1398.748, 0.024g,
ffprim file,write,2g, 769, 174.672, 12.810g,
ffprim file,open int,4g, 1, 19.755, 0.017g,
ffprim file,open int setopts,3g, 1, 0.147, 0.016g],

f fprim file,drv command,2g, 772, 1593.322, 12.867g, %
[ffprim file,drv command,4g, 772, 1578.973, 27.265g,
fsuspend, 22, 1.482, 0.000g]g.

The time for file operations in the linked in driver distributes itself as 1 % for open, 11
% for write and 87 % for close. All data is probably buffered in the operating system
until the close.

The unsleeping reader may notice that the ACC times for prim file:drv command/2
and prim file:drv command/4 is not equal between the paragraphs above, even though
it is easy to beleive that prim file:drv command/2 is just a passthrough function.

The missing time can be found in the paragraph for prim file:drv command/4 where it
is evident that not only prim file:drv command/2 is called but also a fun:

f[ffprim file,drv command,2g, 772, 1578.973, 27.265g],
f fprim file,drv command,4g, 772, 1578.973, 27.265g, %
[fferlang,port command,2g, 772, 1458.356, 1456.643g,
ffprim file,’-drv command/2-fun-0-’,1g, 772, 87.897, 12.736g,
fsuspend, 50, 4.582, 0.000g,
fgarbage collect, 25, 0.873, 0.873g]g.

And some more missing time can be explained by the fact that prim file:open int/4
both calls prim file:drv command/2 directly as well as through
prim file:open int setopts/3, which complicates the picture.

f[ffprim file,open,2g, 1, 20.309, 0.029g,
ffprim file,open int,4g, 1, 0.000, 0.057g],

f fprim file,open int,4g, 2, 20.309, 0.086g, %
[ffprim file,drv command,2g, 1, 19.755, 0.017g,
ffprim file,open int setopts,3g, 1, 0.360, 0.032g,
ffprim file,drv open,2g, 1, 0.071, 0.030g,
fferlang,list to binary,1g, 1, 0.020, 0.020g,
ffprim file,i32,1g, 1, 0.017, 0.017g,
ffprim file,open int,4g, 1, 0.000, 0.057g]g.

.

.

.
f[ffprim file,open int,4g, 1, 0.360, 0.032g,

ffprim file,open int setopts,3g, 1, 0.000, 0.016g],
f fprim file,open int setopts,3g, 2, 0.360, 0.048g, %
[fsuspend, 1, 0.165, 0.000g,
ffprim file,drv command,2g, 1, 0.147, 0.016g,
ffprim file,open int setopts,3g, 1, 0.000, 0.016g]g.

40 Tools

Tools Reference Manual fprof

Notes

The actual supervision of execution times is in itself a CPU intensive activity. A message
is written on the trace file for every function call that is made by the profiled code.

The ACC time calculation is sometimes difficult to make correct, since it is difficult to
define. This happens especially when a function occurs in several instances in the call
stack, for example by calling itself perhaps through other functions and perhaps even
non-tail recursively.

To produce sensible results, fprof tries not to charge any function more than once for
ACC time. The instance highest up (with longest duration) in the call stack is chosen.

Sometimes a function may unexpectedly waste a lot (some 10 ms or more depending
on host machine OS) of OWN (and ACC) time, even functions that does practically
nothing at all. The problem may be that the OS has chosen to schedule out the Erlang
runtime system process for a while, and if the OS does not support high resolution cpu
time measurements fprof will use wallclock time for its calculations, and it will appear
as functions randomly burn virtual machine time.

See Also

dbg(3), eprof [page 27](3), erlang(3), io(3), Tools User’s Guide [page 10]

41Tools

instrument Tools Reference Manual

instrument
Erlang Module

The module instrument contains support for studying the resource usage in an Erlang
runtime system. Currently, only the allocation of memory can be studied.

Note:
Note that this whole module is experimental, and the representations used as well as
the functionality is likely to change in the future.

Some of the functions in this module are only available in Erlang compiled with
instrumentation; otherwise they exit with badarg. This is noted below for the
individual functions. To start an Erlang runtime system with instrumentation, use the
command-line option -instr to the erl command.

The basic object of study in the case of memory allocation is a memory allocation list,
which contains one descriptor for each allocated memory block. Currently, a descriptor
is a 4-tuple

fType, Address, Size, Pidg

where Type indicates what the block is used for, Address is its place in memory, and
Size is its size, in bytes. Pid is either undefined (if the block was allocated by the
runtime system itself) or a tuple fA,B,Cg representing the process which allocated the
block, which corresponds to a pid with the user-visible representation <A.B.C> (the
function c:pid/3 can be used to transform the numbers to a real pid).

Various details about memory allocation:

On Unix (for example, Solaris), memory for a process is allocated linearly, usually from
0. The current size of the process cannot be obtained from within Erlang, but can be
seen with one of the system statistics tools, e.g., ps or top. (There may be a hole above
the highest used memory block; in that case the functions in the instrument module
cannot tell you about it; you have to compare the High value from mem limits/1 with
the value which the system reports for Erlang.)

In the memory allocation list, certain small objects do not show up individually, since
they are allocated from blocks of 20 objects (called “fixalloc” blocks). The blocks
themselves do show up, but the amount of internal fragmentation in them currently
cannot be observed.

Overhead for instrumentation: instrumented memory allocation uses 28 bytes extra for
each block. The time overhead for managing the list is negligible.

42 Tools

Tools Reference Manual instrument

Exports

holes(AllocList) -> ok

Types:

� AllocList = [Desc]
� Desc = fint(), int(), int(), pid tuple()g
� pid tuple() = fint(), int(), int()g

Prints out the size of each hole (i.e., the space between allocated blocks) on the
terminal. The list must be sorted (see sort/1).

mem limits(AllocList) -> fLow, Highg

Types:

� AllocList = [Desc]
� Desc = fint(), int(), int(), pid tuple()g
� pid tuple() = fint(), int(), int()g
� Low = High = int()

returns a tuple fLow, Highg indicating the lowest and highest address used. The list
must be sorted (see sort/1).

memory data() -> AllocList

Types:

� AllocList = [Desc]
� Desc = fint(), int(), int(), pid tuple()g
� pid tuple() = fint(), int(), int()g

Returns the memory allocation list. Only available in an Erlang runtime system
compiled for instrumentation. Blocks execution of other processes while the list is
collected.

read memory data(File) -> fok, AllocListg | ferror, Reasong

Types:

� File = string()
� AllocList = [Desc]
� Desc = fint(), int(), int(), pid tuple()g
� pid tuple() = fint(), int(), int()g

Reads a memory allocation list from the file File. The file is assumed to have been
created by store memory data/1. The error codes are the same as for file:consult/1.

sort(AllocList) -> AllocList

Types:

� AllocList = [Desc]
� Desc = fint(), int(), int(), pid tuple()g
� pid tuple() = fint(), int(), int()g

43Tools

instrument Tools Reference Manual

Sorts a memory allocation list so the addresses are in ascending order. The list
arguments to many of the functions in this module must be sorted. No other function
in this module returns a sorted list.

store memory data(File) -> ok

Types:

� File = string()

Stores the memory allocation list on the file File. The contents of the file can later be
read using read memory data/1. Only available in an Erlang runtime system compiled
for instrumentation. Blocks execution of other processes while the list is collected (the
time to write the data is around 0.1 ms/line on a Sun Ultra 1).

Failure: badarg if the file could not be written.

sum blocks(AllocList) -> int()

Types:

� AllocList = [Desc]
� Desc = fint(), int(), int(), pid tuple()g
� pid tuple() = fint(), int(), int()g

Returns the total size of the memory blocks in the list. The list must be sorted (see
sort/1).

type string(Type) -> string()

Types:

� Type = int()

Translates a memory block type number into a readable string, which is a short
description of the block type.

Failure: badarg if the argument is not a valid block type number.

44 Tools

Tools Reference Manual make

make
Erlang Module

The module make provides a set of functions similar to the UNIX type Make functions.

Exports

all() -> up to date | error

all(Options) -> up to date | error

Types:

� Options = [Option]
� Option = noexec | load | netload | par | <compiler option>

This function first looks in the current working directory for a file named Emakefile
(see below) specifying the set of modules to compile. If no such file is found, the set of
modules to compile defaults to all modules in the current working directory.

Traversing the set of modules, it then recompiles every module for which at least one of
the following conditions apply:

� there is no object file, or

� the source file has been modified since it was last compiled, or,

� an include file has been modified since the source file was last compiled.

As a side effect, the function prints the name of each module it tries to compile. If
compilation fails for a module, the make procedure stops and error is returned.

Options is a list of make- and compiler options. The following make options exist:

� noexec
No execution mode. Just prints the name of each module that needs to be
compiled.

� load
Load mode. Loads all recompiled modules.

� netload
Net load mode. Loads all recompiled modules an all known nodes.

� par
Parallel mode. make is used in parallell on all known nodes.

All items in Options that are not make options are assumed to be compiler options and
are passed as-is to compile:file/2. Options defaults to [].

files(ModFiles) -> up to date | error

45Tools

make Tools Reference Manual

files(ModFiles, Options) -> up to date | error

Types:

� ModFiles = [Module | File]
� Module = atom()
� File = string()
� Options = [Option]
� Option = noexec | load | netload | par | <compiler option>

files/1,2 does exactly the same thing as all/0,1 but for the specified ModFiles,
which is a list of module or file names. The file extension .erl may be omitted.

Files

make:all/0,1 looks in the current working directory for a file named Emakefile for
the set of modules to compile. If it exists, Emakefile should contain the module names
(atoms) separated by periods. If the module is located in another directory, the path has
to be specified. For example:

file1.
file2.
’../foo/file3’.
’File4’.

46 Tools

Tools Reference Manual tags

tags
Erlang Module

A TAGS file is used by Emacs to find function and variable definitions in any source file
in large projects. This module can generate a TAGS file from Erlang source files. It
recognises functions, records, and macro definitions.

Exports

file(File [, Options])

Create a TAGS file for the file File.

files(FileList [, Options])

Create a TAGS file for the files in the list FileList.

dir(Dir [, Options])

Create a TAGS file for all files in directory Dir.

dirs(DirList [, Options])

Create a TAGS file for all files in any directory in DirList.

subdir(Dir [, Options])

Descend recursively down the directory Dir and create a TAGS file based on all files
found.

subdirs(DirList [, Options])

Descend recursively down all the directories in DirList and create a TAGS file based on
all files found.

root([Options])

Create a TAGS file covering all files in the Erlang distribution.

47Tools

tags Tools Reference Manual

OPTIONS

The functions above have an optional argument, Options. It is a list which can contain
the following elements:

� foutfile, NameOfTAGSFilegCreate a TAGS file named NameOfTAGSFile.

� foutdir, NameOfDirectorygCreate a file named TAGS in the directory
NameOfDirectory.

The default behaviour is to create a file named TAGS in the current directory.

Examples

� tags:root([foutfile, "root.TAGS"g]).
This command will create a file named root.TAGS in the current directory. The file
will contain references to all Erlang source files in the Erlang distribution.

� tags:files(["foo.erl", "bar.erl", "baz.erl"], [foutdir,
"../projectdir"g]).
Here we create file named TAGS placed it in the directory ../projectdir. The file
contains information about the functions, records, and macro definitions of the
three files.

SEE ALSO

� Richard M. Stallman. GNU Emacs Manual, chapter “Editing Programs”, section
“Tag Tables”. Free Software Foundation, 1995.

� Anders Lindgren. The Erlang editing mode for Emacs. Ericsson, 1998.

48 Tools

Tools Reference Manual xref

xref
Erlang Module

Xref is a cross reference tool that can be used for finding dependencies between
functions, modules, applications and releases.

Calls between functions are either local calls like f(), or external calls like m:f().
Module data, which are extracted from BEAM files, include local functions, exported
functions, local calls and external calls. By default, calls to built-in functions (BIF) are
ignored, but if the option builtins, accepted by some of this module’s functions, is set
to true, calls to BIFs are included as well. It is the analyzing OTP version that decides
what functions are BIFs. Functional objects are assumed to be called where they are
created (and nowhere else). Unresolved calls are calls to apply or spawn with variable
module, variable function, or variable arguments. Examples are M:F(a),
apply(M,f,[a]), and spawn(m,f(),Args). Unresolved calls are represented by calls
where variable modules have been replaced with the atom ’$M EXPR’, variable
functions have been replaced with the atom ’$F EXPR’, and variable number of
arguments have been replaced with the number -1. The above mentioned examples are
represented by calls to ’$M EXPR’:’$F EXPR’/1, ’$M EXPR’:f/1, and m:’$F EXPR’/-1.
The unresolved calls are a subset of the external calls.

Warning:
Unresolved calls make module data incomplete, which implies that the results of
analyses may be invalid.

Applications are collections of modules. The modules’ BEAM files are located in the
ebin subdirectory of the application directory. The name of the application directory
determines the name and version of the application. Releases are collections of
applications located in the lib subdirectory of the release directory. There is more to
read about applications and releases in the Design Principles book.

Xref servers are identified by names, supplied when creating new servers. Each Xref
server holds a set of releases, a set of applications, and a set of modules with module
data. Xref servers are independent of each other, and all analyses are evaluated in the
context of one single Xref server (exceptions are the functions m/1 and d/1 which do
not use servers at all). The mode of an Xref server determines what module data are
extracted from BEAM files as modules are added to the server. Starting with R7, BEAM
files compiled with the option debug info contain so called debug information, which
is an abstract representation of the code. In functions mode, which is the default
mode, function calls and line numbers are extracted from debug information. In
modules mode, debug information is ignored if present, but dependencies between
modules are extracted from other parts of the BEAM files. The modules mode is
significantly less time and space consuming than the functions mode, but the analyses
that can be done are limited.

49Tools

xref Tools Reference Manual

An analyzed module is a module that has been added to an Xref server together with its
module data. A library module is a module located in some directory mentioned in the
library path. A library module is said to be used if some of its exported functions are
used by some analyzed module. An unknown module is a module that is neither an
analyzed module nor a library module, but whose exported functions are used by some
analyzed module. An unknown function is a used function that is neither local or
exported by any analyzed module nor exported by any library module. An undefined
function is an externally used function that is not exported by any analyzed module or
library module. With this notion, a local function can be an undefined function, namely
if it is used externally from some module. All unknown functions are also undefined
functions; there is a figure [page 14] in the User’s Guide that illustrates this relationship.

Before any analysis can take place, module data must be set up. For instance, the cross
reference and the unknown functions are computed when all module data are known.
The functions that need complete data (analyze, q, variables) take care of setting up
data automatically. Module data need to be set up (again) after calls to any of the add,
replace, remove, set library path or update functions.

The result of setting up module data is the Call Graph. A (directed) graph consists of a
set of vertices and a set of (directed) edges. The edges represent calls (From,To)
between functions, modules, applications or releases. From is said to call To, and To is
said to be used by From. The vertices of the Call Graph are the functions of all module
data: local and exported functions of analyzed modules; used BIFs; used exported
functions of library modules; and unknown functions. The functions module info/0,1
added by the compiler are included among the exported functions, but only when
called from some module. The edges are the function calls of all module data. A
consequence of the edges being a set is that there is only one edge if a function is used
locally or externally several times on one and the same line of code.

The Call Graph is represented by Erlang terms (the sets are lists), which is suitable for
many analyses. But for analyses that look at chains of calls, a list representation is much
too slow. Instead the representation offered by the digraph module is used. The
translation of the list representation of the Call Graph - or a subgraph thereof - to the
digraph representation does not come for free, so the language used for expressing
queries to be described below has a special operator for this task and a possibility to save
the digraph representation for subsequent analyses.

In addition to the Call Graph there is a graph called the Inter Call Graph. This is a
graph of calls (From,To) such that there is a chain of calls from From to To in the Call
Graph, and each of From and To is an exported function or an unused local function.
The vertices are the same as for the Call Graph.

Calls between modules, applications and releases are also directed graphs. The types of
the vertices and edges of these graphs are (ranging from the most special to the most
general): Fun for functions; Mod for modules; App for applications; and Rel for releases.
The following paragraphs will describe the different constructs of the language used for
selecting and analyzing parts of the graphs, beginning with the constants:

� Expression ::= Constants

� Constants ::= Consts | Consts : Type | RegExpr

� Consts ::= Constant | [Constant,...] | fConstant,...g

� Constant ::= Call | Const

� Call ::= FunSpec->FunSpec | fMFA,MFAg | AtomConst->AtomConst |
fAtomConst,AtomConstg

� Const ::= AtomConst | FunSpec | MFA

50 Tools

Tools Reference Manual xref

� AtomConst ::= Application | Module | Release

� FunSpec ::= Module : Function / Arity

� MFA ::= fModule,Function,Arityg

� RegExpr ::= RegString : Type | RegFunc | RegFunc : Type

� RegFunc ::= RegModule : RegFunction / RegArity

� RegModule ::= RegAtom

� RegFunction ::= RegAtom

� RegArity ::= RegString | Number |

� RegAtom ::= RegString | Atom |

� RegString ::= - a regular expression, as described in the regexp module, enclosed
in double quotes -

� Type ::= Fun | Mod | App | Rel

� Function ::= Atom

� Application ::= Atom

� Module ::= Atom

� Release ::= Atom

� Arity ::= Number

� Atom ::= - same as Erlang atoms -

� Number ::= - same as non-negative Erlang integers -

Examples of constants are: kernel, kernel->stdlib, [kernel, sasl], [pg ->
mnesia, ftv, mnesiag] : Mod. It is an error if an instance of Const does not match
any vertex of any graph. If there are more than one vertex matching an untyped
instance of AtomConst, then the one of the most general type is chosen. A list of
constants is interpreted as a set of constants, all of the same type. A tuple of constants
constitute a chain of calls (which may, but does not have to, correspond to an actual
chain of calls of some graph). Assigning a type to a list or tuple of Constant is
equivalent to assigning the type to each Constant.

Regular expressions are used as a means to select some of the vertices of a graph. A
RegExpr consisting of a RegString and a type - an example is "xref .*" : Mod - is
interpreted as those modules (or applications or releases, depending on the type) that
match the expression. Similarly, a RegFunc is interpreted as those vertices of the Call
Graph that match the expression. An example is "xref .*":"add .*"/"(2|3)", which
matches all add functions of arity two or three of any of the xref modules. Another
example, one that matches all functions of arity 10 or more: : /"[1-9].+". Here is
an abbreviation for ".*", that is, the regular expression that matches anything.

The syntax of variables is simple:

� Expression ::= Variable

� Variable ::= - same as Erlang variables -

There are two kinds of variables: predefined variables and user variables. Predefined
variables hold set up module data, and cannot be assigned to but only used in queries.
User variables on the other hand can be assigned to, and are typically used for temporary
results while evaluating a query, and for keeping results of queries for use in subsequent
queries. The predefined variables are (variables marked with (*) are available in
functions mode only):

51Tools

xref Tools Reference Manual

E Call Graph Edges (*).

V Call Graph Vertices (*).

M Modules. All modules: analyzed modules, used library modules, and unknown
modules.

A Applications.

R Releases.

ME Module Edges. All module calls.

AE Application Edges. All application calls.

RE Release Edges. All release calls.

L Local Functions (*). All local functions of analyzed modules.

X Exported Functions. All exported functions of analyzed modules and all used
exported functions of library modules.

F Functions (*).

B Used BIFs. B is empty if builtins is false for all analyzed modules.

U Unknown Functions.

UU Unused Functions (*). All local and exported functions of analyzed modules that
have not been used.

XU Externally Used Functions. Functions of all modules - including local functions -
that have been used in some external call.

LU Locally Used Functions (*). Functions of all modules that have been used in some
local call.

LC Local Calls (*).

XC External Calls (*).

AM Analyzed Modules.

UM Unknown Modules.

LM Used Library Modules.

UC Unresolved Calls. Empty in modules mode.

EE Inter Call Graph Edges (*).

These are a few facts about the predefined variables (the set operators + (union) and -
(difference) as well as the cast operator (Type) are described below):

� F is equal to L + X.

� V is equal to X + L + B + U, where X, L, B and U are pairwise disjoint (that is, have
no elements in common).

� UU is equal to V - (XU + LU), where LU and XU may have elements in common.
Put in another way:

� V is equal to UU + XU + LU.

� E is equal to LC + XC. Note that LC and XC may have elements in common, namely
if some function is used locally and externally from one and the same function.

� U is a subset of XU.

� B is a subset of XU.

� LU is equal to range LC.

� XU is equal to range XC.

52 Tools

Tools Reference Manual xref

� LU is a subset of F.

� UU is a subset of F.

� range UC is a subset of U.

� M is equal to AM + LM + UM, where AM, LM and UM are pairwise disjoint.

� ME is equal to (Mod) E.

� AE is equal to (App) E.

� RE is equal to (Rel) E.

� (Mod) V is a subset of M. Equality holds if all analyzed modules have some local,
exported, or unknown function.

� (App) M is a subset of A. Equality holds if all applications have some module.

� (Rel) A is a subset of R. Equality holds if all releases have some application.

An important notion is that of conversion of expressions. The syntax of a cast expression
is:

� Expression ::= (Type) Expression

The interpretation of the cast operator depends on the named type Type, the type of
Expression, and the structure of the elements of the interpretation of Expression. If
the named type is equal to the expression type, no conversion is done. Otherwise, the
conversion is done one step at a time; (Fun)(App)RE, for instance, is equivalent to
(Fun)(Mod)(App)RE. Now assume that the interpretation of Expression is a set of
constants (functions, modules, applications or releases). If the named type is more
general than the expression type, say Mod and Fun respectively, then the interpretation
of the cast expression is the set of modules that have at least one of their functions
mentioned in the interpretation of the expression. If the named type is more special
than the expression type, say Fun and Mod, then the interpretation is the set of all the
functions of the modules (in modules mode, the conversion is partial since the local
functions are not known). The conversions to and from applications and releases work
analogously. For instance, (App) "xref .*" : Mod returns all applications containing
at least one module such that xref is a prefix of the module name.

Now assume that the interpretation of Expression is a set of calls. If the named type is
more general than the expression type, say Mod and Fun respectively, then the
interpretation of the cast expression is the set of calls (M1,M2) such that the
interpretation of the expression contains a call from some function of M1 to some
function of M2. If the named type is more special than the expression type, say Fun and
Mod, then the interpretation is the set of all function calls (F1,F2) such that the
interpretation of the expression contains a call (M1,M2) and F1 is a function of M1 and
F2 is a function of M2 (in modules mode, there are no functions calls, so a cast to Fun
always yields an empty set). Again, the conversions to and from applications and
releases work analogously.

The interpretation of constants and variables are sets, and those sets can be used as the
basis for forming new sets by the application of set operators. The syntax:

� Expression ::= Expression BinarySetOp Expression

� BinarySetOp ::= + | * | -

53Tools

xref Tools Reference Manual

+, * and - are interpreted as union, intersection and difference respectively: the union
of two sets contains the elements of both sets; the intersection of two sets contains the
elements common to both sets; and the difference of two sets contains the elements of
the first set that are not members of the second set. The elements of the two sets must
be of the same structure; for instance, a function call cannot be combined with a
function. But if a cast operator can make the elements compatible, then the more
general elements are converted to the less general element type. For instance, M+F is
equivalent to (Fun)M+F, and E-AE is equivalent to E-(Fun)AE. One more example: X *
xref : Mod is interpreted as the set of functions exported by the module xref; xref
: Mod is converted to the more special type of X (Fun, that is) yielding all functions of
xref, and the intersection with X (all functions exported by analyzed modules and
library modules) is interpreted as those functions that are exported by some module
and functions of xref.

There are also unary set operators:

� Expression ::= UnarySetOp Expression

� UnarySetOp ::= domain | range | strict

Recall that a call is a pair (From,To). domain applied to a set of calls is interpreted as the
set of all vertices From, and range as the set of all vertices To. The interpretation of the
strict operator is the operand with all calls on the form (A,A) removed.

The interpretation of the restriction operators is a subset of the first operand, a set of
calls. The second operand, a set of vertices, is converted to the type of the first operand.
The syntax of the restriction operators:

� Expression ::= Expression RestrOp Expression

� RestrOp ::= |

� RestrOp ::= ||

� RestrOp ::= |||

The interpretation in some detail for the three operators:

| The subset of calls from any of the vertices.

|| The subset of calls to any of the vertices.

||| The subset of calls to and from any of the vertices. For all sets of calls CS and all
sets of vertices VS, CS|||VS is equivalent to CS|VS*CS||VS.

Two functions (modules, applications, releases) belong to the same strongly connected
component if they call each other (in)directly. The interpretation of the components
operator is the set of strongly connected components of a set of calls. The
condensation of a set of calls is a new set of calls between the strongly connected
components such that there is an edge between two components if there is some
constant of the first component that calls some constant of the second component.

The interpretation of the of operator is a chain of calls of the second operand (a set of
calls) that passes throw all of the vertices of the first operand (a tuple of constants), in
the given order. The second operand is converted to the type of the first operand. For
instance, the of operator can be used for finding out whether a function calls another
function indirectly, and the chain of calls demonstrates how. The syntax of the graph
analyzing operators:

� Expression ::= Expression GraphOp Expression

54 Tools

Tools Reference Manual xref

� GraphOp ::= components | condensation | of

As was mentioned before, the graph analyses operate on the digraph representation of
graphs. By default, the digraph representation is created when needed (and deleted
when no longer used), but it can also be created explicitly by use of the closure
operator:

� Expression ::= ClosureOp Expression

� ClosureOp ::= closure

The interpretation of the closure operator is the transitive closure of the operand.

The restriction operators are defined for closures as well; closureE|xref:Mod is
interpreted as the direct or indirect function calls from the xref module, while the
interpretation of E|xref:Mod is the set of direct calls from xref. If some graph is to be
used in several graph analyses, it saves time to assign the digraph representation of the
graph to a user variable, and then make sure that each graph analysis operates on that
variable instead of the list representation of the graph.

The lines where functions are defined (more precisely: where the first clause begins)
and the lines where functions are used are available in functions mode. The line
numbers refer to the files where the functions are defined. This holds also for files
included with the -include and -include lib directives, which may result in
functions defined apparently in the same line. The line operators are used for assigning
line numbers to functions and for assigning sets of line numbers to function calls. The
syntax is similar to the one of the cast operator:

� Expression ::= (LineOp) Expression

� Expression ::= (XLineOp) Expression

� LineOp ::= Lin | ELin | LLin | XLin

� XLineOp ::= XXL

The interpretation of the Lin operator applied to a set of functions assigns to each
function the line number where the function is defined. Unknown functions and
functions of library modules are assigned the number 0.

The interpretation of some LineOp operator applied to a set of function calls assigns to
each call the set of line numbers where the first function calls the second function. Not
all calls are assigned line numbers by all operators:

� the Lin operator is defined for Call Graph Edges;

� the LLin operator is defined for Local Calls.

� the XLin operator is defined for External Calls.

� the ELin operator is defined for Inter Call Graph Edges.

The Lin (LLin, XLin) operator assigns the lines where calls (local calls, external calls)
are made. The ELin operator assigns to each call (From,To), for which it is defined, each
line L such that there is a chain of calls from From to To beginning with a call on line L.

The XXL operator is defined for the interpretation of any of the LineOp operators
applied to a set of function calls. The result is that of replacing the function call with a
line numbered function call, that is, each of the two functions of the call is replaced by
a pair of the function and the line where the function is defined. The effect of the XXL
operator can be undone by the LineOp operators. For instance, (Lin)(XXL)(Lin)E is
equivalent to (Lin)E.

55Tools

xref Tools Reference Manual

The +, -, * and # operators are defined for line number expressions, provided the
operands are compatible. The LineOp operators are also defined for modules,
applications, and releases; the operand is implicitly converted to functions. Similarly,
the cast operator is defined for the interpretation of the LineOp operators.

The interpretation of the counting operator is the number of elements of a set. The
operator is undefined for closures. The +, - and * operators are interpreted as the
obvious arithmetical operators when applied to numbers. The syntax of the counting
operator:

� Expression ::= CountOp Expression

� CountOp ::= #

All binary operators are left associative; for instance, A|B ||C is equivalent to (A|B)||C.
The following is a list of all operators, in increasing order of precedence:

� +, -

� *

� #

� |, ||, |||

� of

� (Type)

� closure, components, condensation, domain, range, strict

Parentheses are used for grouping, either to make an expression more readable or to
override the default precedence of operators:

� Expression ::= (Expression)

A query is a non-empty sequence of statements. A statement is either an assignment of a
user variable or an expression. The value of an assignment is the value of the right hand
side expression. It makes no sense to put a plain expression anywhere else but last in
queries. The syntax of queries is summarized by these productions:

� Query ::= Statement,...

� Statement ::= Assignment | Expression

� Assignment ::= Variable := Expression | Variable = Expression

A variable cannot be assigned a new value unless first removed. Variables assigned to by
the = operator are removed at the end of queries, while variables assigned to by the :=
operator can only be removed by calls to forget.

Types

application() = atom()
arity() = int()
bool() = true | false
call() = fatom(), atom()g | funcall()
constant() = mfa() | module() | application() | release()
directory() = string()
file() = string()
funcall() = fmfa(), mfa()g
function() = atom()

56 Tools

Tools Reference Manual xref

int() = integer() >= 0
library() = atom()
library path() = path() | code path
mfa() = fmodule(), function(), arity()g
mode() = functions | modules
module() = atom()
release() = atom()
string position() = int() | at end
variable() = atom()
xref() = atom()

Exports

add application(Xref, Directory [, Options]) -> fok, application()g | Error

Types:

� Directory = directory()
� Error = ferror, module(), Reasong
� Options = [Option] | Option
� Option = fbuiltins, bool()g | fname, application()g | fverbose, bool()g | fwarnings,

bool()g
� Reason = fapplication clash, fapplication(), directory(), directory()gg | ffile error,

file(), error()g | finvalid options, term()g | -seealsoadd directory-
� Xref = xref()

Adds an application, the modules of the application and module data [page 49] of the
modules to an Xref server [page 49]. The modules will be members of the application.
The default is to use the base name of the directory with the version removed as
application name, but this can be overridden by the name option. Returns the name of
the application.

If the given directory has a subdirectory named ebin, modules (BEAM files) are
searched for in that directory, otherwise modules are searched for in the given directory.

If the mode [page 49] of the Xref server is functions, BEAM files that contain no
debug information [page 49] are ignored.

add directory(Xref, Directory [, Options]) -> fok, Modulesg | Error

Types:

� Directory = directory()
� Error = ferror, module(), Reasong
� Modules = [module()]
� Options = [Option] | Option
� Option = fbuiltins, bool()g | frecurse, bool()g | fverbose, bool()g | fwarnings,

bool()g
� Reason = ffile error, file(), error()g | finvalid options, term()g | funrecognized file,

file()g | -error from beam lib:chunks/2-
� Xref = xref()

57Tools

xref Tools Reference Manual

Adds the modules found in the given directory and the modules’ data [page 49] to an
Xref server [page 49]. The default is not to examine subdirectories, but if the option
recurse has the value true, modules are searched for in subdirectories on all levels as
well as in the given directory. Returns a sorted list of the names of the added modules.

The modules added will not be members of any applications.

If the mode [page 49] of the Xref server is functions, BEAM files that contain no
debug information [page 49] are ignored.

add module(Xref, File [, Options]) -> fok, module()g | Error

Types:

� Error = ferror, module(), Reasong
� File = file()
� Options = [Option] | Option
� Option = fbuiltins, bool()g | fverbose, bool()g | fwarnings, bool()g
� Reason = ffile error, file(), error()g | finvalid options, term()g | fmodule clash,
fmodule(), file(), file()gg | fno debug info, file()g | -error from beam lib:chunks/2-

� Xref = xref()

Adds a module and its module data [page 49] to an Xref server [page 49]. The module
will not be member of any application. Returns the name of the module.

If the mode [page 49] of the Xref server is functions, and the BEAM file contains no
debug information [page 49], the error message no debug info is returned.

add release(Xref, Directory [, Options]) -> fok, release()g | Error

Types:

� Directory = directory()
� Error = ferror, module(), Reasong
� Options = [Option] | Option
� Option = fbuiltins, bool()g | fname, release()g | fverbose, bool()g | fwarnings,

bool()g
� Reason = fapplication clash, fapplication(), directory(), directory()gg | ffile error,

file(), error()g | finvalid options, term()g | frelease clash, frelease(), directory(),
directory()gg | -seealsoadd directory-

� Xref = xref()

Adds a release, the applications of the release, the modules of the applications, and
module data [page 49] of the modules to an Xref server [page 49]. The applications
will be members of the release, and the modules will be members of the applications.
The default is to use the base name of the directory as release name, but this can be
overridden by the name option. Returns the name of the release.

If the given directory has a subdirectory named lib, the directories in that directory are
assumed to be application directories, otherwise all subdirectories of the given directory
are assumed to be application directories. If there are several versions of some
application, the one with the highest version is chosen.

If the mode [page 49] of the Xref server is functions, BEAM files that contain no
debug information [page 49] are ignored.

analyze(Xref, Analysis [, Options]) -> fok, Answerg | Error

58 Tools

Tools Reference Manual xref

Types:

� Analysis = undefined function calls | undefined functions | locals not used |
exports not used | fcall, FuncSpecg | fuse, FuncSpecg | fmodule call, ModSpecg |
fmodule use, ModSpecg | fapplication call, AppSpecg | fapplication use,
AppSpecg | frelease call, RelSpecg | frelease use, RelSpecg

� Answer = [term()]
� AppSpec = application() | [application()]
� Error = ferror, module(), Reasong
� FuncSpec = mfa() | [mfa()]
� ModSpec = module() | [module()]
� Options = [Option] | Option
� Option = fverbose, bool()g
� RelSpec = release() | [release()]
� Reason = finvalid options, term()g | fparse error, string position(), term()g |
funavailable analysis, term()g | funknown analysis, term()g | funknown constant,
string()g | funknown variable, variable()g

� Xref = xref()

Evaluates a predefined analysis. Returns a sorted list without duplicates of call() or
constant(), depending on the chosen analysis. The predefined analyses, which operate
on all analyzed modules [page 50], are (analyses marked with (*) are available in
functions mode [page 49] only):

undefined function calls (*) Returns a list of calls to undefined functions [page
50].

undefined functions Returns a list of undefined functions [page 50].

locals not used (*) Returns a list of local functions that have not been used locally.

exports not used Returns a list of exported functions that have not been used
externally.

fcall, FuncSpecg (*) Returns a list of functions called by some of the given
functions.

fuse, FuncSpecg (*) Returns a list of functions that use some of the given functions.

fmodule call, ModSpecg Returns a list of modules called by some of the given
modules.

fmodule use, ModSpecg Returns a list of modules that use some of the given modules.

fapplication call, AppSpecg Returns a list of applications called by some of the
given applications.

fapplication use, AppSpecg Returns a list of applications that use some of the given
applications.

frelease call, RelSpecg Returns a list of releases called by some of the given
releases.

frelease use, RelSpecg Returns a list of releases that use some of the given releases.

d(Directory) -> [DebugInfoResult] | [NoDebugInfoResult] | Error

Types:

� Directory = directory()
� DebugInfoResult = fundefined, [funcall()]g | funused, [mfa()]g

59Tools

xref Tools Reference Manual

� Error = ferror, module(), Reasong
� NoDebugInfoResult = fundefined, [mfa()]g
� Reason = ffile error, file(), error()g | funrecognized file, file()g | -error from

beam lib:chunks/2-

The modules found in the given directory are checked for calls to undefined functions
[page 50] and for unused local functions. The code path is used as library path [page
50].

If some of the found BEAM files contain debug information [page 49], then those
modules are checked and a list of tuples is returned. The first element of each tuple is
one of:

� undefined, the second element is a sorted list of calls to undefined functions;

� unused, the second element is a sorted list of unused local functions.

If no BEAM file contains debug information, then a list of one tuple is returned. The
first element of the tuple is undefined, and the second element is a sorted list of
undefined functions.

forget(Xref) -> ok

forget(Xref, Variables) -> ok | Error

Types:

� Error = ferror, module(), Reasong
� Reason = fnot user variable, term()g
� Variables = [variable()] | variable()
� Xref = xref()

forget/1 and forget/2 remove all or some of the user variables [page 51] of an xref
server [page 49].

format error(Error) -> character list()

Types:

� Error = ferror, module(), term()g

Given the error returned by any function of this module, the function format error
returns a descriptive string of the error in English. For file errors, the function
format error/1 in the file module is called.

get default(Xref) -> [fOption, Valueg]

get default(Xref, Option) -> fok, Valueg | Error

Types:

� Error = ferror, module(), Reasong
� Option = builtins | recurse | verbose | warnings
� Reason = finvalid options, term()g
� Value = bool()
� Xref = xref()

Returns the default values of one or more options.

get library path(Xref) -> fok, LibraryPathg

60 Tools

Tools Reference Manual xref

Types:

� LibraryPath = library path()
� Xref = xref()

Returns the library path [page 50].

info(Xref) -> [Info]

info(Xref, Category) -> [fItem, [Info]g]

info(Xref, Category, Items) -> [fItem, [Info]g]

Types:

� Application = [] | [application()]
� Category = modules | applications | releases | libraries
� Info = fapplication, Applicationg | fbuiltins, bool()g | fdirectory, directory()g |
flibrary path, library path()g | fmode, mode()g | fno analyzed modules, int()g |
fno applications, int()g | fno calls, fNoResolved, NoUnresolvedgg |
fno function calls, fNoLocal, NoResolvedExternal, NoUnresolvedgg |
fno functions, fNoLocal, NoExternalgg | fno inter function calls, int()g |
fno releases, int()g | frelease, Releaseg | fversion, Versiong

� Item = module() | application() | release() | library()
� Items = Item | [Item]
� NoLocal = NoExternal = NoResolvedExternal, NoResolved = NoUnresolved = int()
� Release = [] | [release()]
� Version = [int()]
� Xref = xref()

The info functions return information as a list of pairs fTag,term()g in some order
about the state and the module data [page 49] of an Xref server [page 49].

info/1 returns information with the following tags (tags marked with (*) are available
in functions mode only):

� library path, the library path [page 50];

� mode, the mode [page 49];

� no releases, number of releases;

� no applications, total number of applications (of all releases);

� no analyzed modules, total number of analyzed modules [page 50];

� no calls (*), total number of calls (in all modules), regarding instances of one
function call in different lines as separate calls;

� no function calls (*), total number of local calls [page 49], resolved external
calls [page 49] and unresolved calls [page 49];

� no functions (*), total number of local and exported functions;

� no inter function calls (*), total number of calls of the Inter Call Graph [page
50].

info/2 and info/3 return information about all or some of the analyzed modules,
applications, releases or library modules of an Xref server. The following information is
returned for each analyzed module:

� application, an empty list if the module does not belong to any application,
otherwise a list of the application name;

61Tools

xref Tools Reference Manual

� builtins, whether calls to BIFs are included in the module’s data;

� directory, the directory where the module’s BEAM file is located;

� no calls (*), number of calls, regarding instances of one function call in different
lines as separate calls;

� no function calls (*), number of local calls, resolved external calls and
unresolved calls;

� no functions (*), number of local and exported functions;

� no inter function calls (*), number of calls of the Inter Call Graph;

The following information is returned for each application:

� directory, the directory where the modules’ BEAM files are located;

� no analyzed modules, number of analyzed modules;

� no calls (*), number of calls of the application’s modules, regarding instances of
one function call in different lines as separate calls;

� no function calls (*), number of local calls, resolved external calls and
unresolved calls of the application’s modules;

� no functions (*), number of local and exported functions of the application’s
modules;

� no inter function calls (*), number of calls of the Inter Call Graph of the
application’s modules;

� release, an empty list if the application does not belong to any release, otherwise
a list of the release name;

� version, the application’s version as a list of numbers. For instance, the directory
“kernel-2.6” results in the application name kernel and the application version
[2,6]; “kernel” yields the name kernel and the version [].

The following information is returned for each release:

� directory, the release directory;

� no analyzed modules, number of analyzed modules;

� no applications, number of applications;

� no calls (*), number of calls of the release’s modules, regarding instances of one
function call in different lines as separate calls;

� no function calls (*), number of local calls, resolved external calls and
unresolved calls of the release’s modules;

� no functions (*), number of local and exported functions of the release’s
modules;

� no inter function calls (*), number of calls of the Inter Call Graph of the
release’s modules.

The following information is returned for each library module:

� directory, the directory where the library module’s [page 50] BEAM file is
located.

62 Tools

Tools Reference Manual xref

For each number of calls, functions etc. returned by the no tags, there is a query
returning the same number. Listed below are examples of such queries. Some of the
queries return the sum of a two or more of the no tags numbers. mod (app, rel) refers
to any module (application, release).

� no analyzed modules

– "# AM" (info/1)
– "# (Mod) app:App" (application)
– "# (Mod) rel:Rel" (release)

� no applications

– "# A" (info/1)

� no calls. The sum of the number of resolved and unresolved calls:

– "# (Lin) E" (info/1)
– "# (Lin) (E | mod:Mod)" (module)
– "# (Lin) (E | app:App)" (application)
– "# (Lin) (E | rel:Rel)" (release)

� no functions. Functions in library modules and the functions module info/0,1
are not counted by info. Assuming that "Extra := :module info/\"(0|1)\" +
LM" has been evaluated, the sum of the number of local and exported functions are:

– "# (F - Extra)" (info/1)
– "# (F * mod:Mod - Extra)" (module)
– "# (F * app:App - Extra)" (application)
– "# (F * rel:Rel - Extra)" (release)

� no function calls. The sum of the number of local calls, resolved external calls
and unresolved calls:

– "# LC + # XC" (info/1)
– "# LC | mod:Mod + # XC | mod:Mod" (module)
– "# LC | app:App + # XC | app:App" (application)
– "# LC | rel:Rel + # XC | mod:Rel" (release)

� no inter function calls

– "# EE" (info/1)
– "# EE | mod:Mod" (module)
– "# EE | app:App" (application)
– "# EE | rel:Rel" (release)

� no releases

– "# R" (info/1)

m(Module) -> [DebugInfoResult] | [NoDebugInfoResult] | Error

m(File) -> [DebugInfoResult] | [NoDebugInfoResult] | Error

Types:

� DebugInfoResult = fundefined, [funcall()]g | funused, [mfa()]g
� Error = ferror, module(), Reasong
� File = file()
� Module = module()
� NoDebugInfoResult = fundefined, [mfa()]g

63Tools

xref Tools Reference Manual

� Reason = ffile error, file(), error()g | finterpreted, module()g | fcover compiled,
module()g | fno such module, module()g | -error from beam lib:chunks/2-

The given BEAM file (with or without the .beam extension) or the the file found by
calling code:which(Module) is checked for calls to undefined functions [page 50] and
for unused local functions. The code path is used as library path [page 50]. If the
BEAM file contains debug information [page 49], then a list of tuples is returned. The
first element of each tuple is one of:

� undefined, the second element is a sorted list of calls to undefined functions;

� unused, the second element is a sorted list of unused local functions.

If the BEAM file does not contain debug information, then a list of one tuple is
returned. The first element of the tuple is undefined, and the second element is a
sorted list of undefined functions.

q(Xref, Query [, Options]) -> fok, Answerg | Error

Types:

� Answer = false | [constant()] | [Call] | [Component] | int() | [DefineAt] |
[CallAt] | [AllLines]

� Call = call() | ComponentCall
� ComponentCall = fComponent, Componentg
� Component = [constant()]
� DefineAt = fmfa(), LineNumberg
� CallAt = ffuncall(), LineNumbersg
� AllLines = ffDefineAt, DefineAtg, LineNumbersg
� Error = ferror, module(), Reasong
� LineNumbers = [LineNumber]
� LineNumber = int()
� Options = [Option] | Option
� Option = fverbose, bool()g
� Query = string() | atom()
� Reason = finvalid options, term()g | fparse error, string position(), term()g |
ftype error, string()g | ftype mismatch, string(), string()g | funknown analysis,
term()g | funknown constant, string()g | funknown variable, variable()g |
fvariable reassigned, string()g

� Xref = xref()

Evaluates a query [page 56] in the context of an Xref server [page 49], and returns the
value of the last statement. The syntax of the value depends on the expression:

� A set of calls is represented by a sorted list without duplicates of call().

� A set of constants is represented by a sorted list without duplicates of constant().

� A set of strongly connected components is a sorted list without duplicates of
Component.

� A set of calls between strongly connected components is a sorted list without
duplicates of ComponentCall.

� A chain of calls is represented by a list of constant(). The list contains the From
vertex of each call and the To vertex of the last call.

64 Tools

Tools Reference Manual xref

� The of operator returns false if no chain of calls between the given constants can
be found.

� The value of the closure operator (the digraph representation) is represented by
the atom ’closure()’.

� A set of line numbered functions is represented by a sorted list without duplicates
of DefineAt.

� A set of line numbered function calls is represented by a sorted list without
duplicates of CallAt.

� A set of line numbered functions and function calls is represented by a sorted list
without duplicates of AllLines.

For both CallAt and AllLines it holds that for no list element is LineNumbers an
empty list; such elements have been removed. The constants of component and the
integers of LineNumbers are sorted and without duplicates.

remove application(Xref, Applications) -> ok | Error

Types:

� Applications = application() | [application()]
� Error = ferror, module(), Reasong
� Reason = fno such application, application()g
� Xref = xref()

Removes applications and their modules and module data [page 49] from an Xref
server [page 49].

remove module(Xref, Modules) -> ok | Error

Types:

� Error = ferror, module(), Reasong
� Modules = module() | [module()]
� Reason = fno such module, module()g
� Xref = xref()

Removes analyzed modules [page 50] and module data [page 49] from an Xref server
[page 49].

remove release(Xref, Releases) -> ok | Error

Types:

� Error = ferror, module(), Reasong
� Reason = fno such release, release()g
� Releases = release() | [release()]
� Xref = xref()

Removes releases and their applications, modules and module data [page 49] from an
Xref server [page 49].

replace application(Xref, Application, Directory [, Options]) -> fok, application()g
| Error

Types:

65Tools

xref Tools Reference Manual

� Application = application()
� Directory = directory()
� Error = ferror, module(), Reasong
� Options = [Option] | Option
� Option = fbuiltins, bool()g | fverbose, bool()g | fwarnings, bool()g
� Reason = fno such application, application()g | -seealsoadd application-
� Xref = xref()

Replaces the modules of an application with other modules read from an application
directory. Release membership of the application is retained. Note that the name of the
application is kept; the name of the given directory is not used.

replace module(Xref, Module, File [, Options]) -> fok, module()g | Error

Types:

� Error = ferror, module(), Reasong
� File = file()
� Module = module()
� Options = [Option] | Option
� Option = fverbose, bool()g | fwarnings, bool()g
� ReadModule = module()
� Reason = fmodule mismatch, module(), ReadModuleg | fno such module,

module()g | -seealsoadd module-
� Xref = xref()

Replaces module data [page 49] of an analyzed module [page 50] with data read from a
BEAM file. Application membership of the module is retained, and so is the value of
the builtins option of the module. An error is returned if the name of the read
module differs from the given module.

The update function is an alternative for updating module data of recompiled modules.

set default(Xref, Option, Value) -> fok, OldValueg | Error

set default(Xref, OptionValues) -> ok | Error

Types:

� Error = ferror, module(), Reasong
� OptionValues = [OptionValue] | OptionValue
� OptionValue = fOption, Valueg
� Option = builtins | recurse | verbose | warnings
� Reason = finvalid options, term()g
� Value = bool()
� Xref = xref()

Sets the default value of one or more options. The options that can be set this way are:

� builtins, with initial default value false;

� recurse, with initial default value false;

� verbose, with initial default value false;

� warnings, with initial default value true.

66 Tools

Tools Reference Manual xref

The initial default values are set when creating an Xref server [page 49].

set library path(Xref, LibraryPath [, Options]) -> ok | Error

Types:

� Error = ferror, module(), Reasong
� LibraryPath = library path()
� Options = [Option] | Option
� Option = fverbose, bool()g
� Reason = finvalid options, term()g | finvalid path, term()g
� Xref = xref()

Sets the library path [page 50]. If the given path is a list of directories, the set of library
modules [page 50] is determined by choosing the first module encountered while
traversing the directories in the given order, for those modules that occur in more than
one directory. By default, the library path is an empty list.

The library path code path is used by the functions m/1 and d/1, but can also be set
explicitly. Note however that the code path will be traversed once for each used library
module [page 50] while setting up module data. On the other hand, if there are only a
few modules that are used by not analyzed, using code path may be faster than setting
the library path to code:get path().

If the library path is set to code path, the set of library modules is not determined, and
the info functions will return empty lists of library modules.

start(Xref [, Options]) -> Return

Types:

� Options = [Option] | Option
� Option = fxref mode, mode()g | term()
� Return = fok, pid()g | ferror, falready started, pid()gg
� Xref = xref()

Creates an Xref server [page 49]. The default mode [page 49] is functions. Options
that are not recognized by Xref are passed on to gen server:start/4.

stop(Xref)

Types:

� Xref = xref()

Stops an Xref server [page 49].

update(Xref [, Options]) -> fok, Modulesg | Error

Types:

� Error = ferror, module(), Reasong
� Modules = [module()]
� Options = [Option] | Option
� Option = fverbose, bool()g | fwarnings, bool()g
� Reason = finvalid options, term()g | fmodule mismatch, module(), ReadModuleg |

-seealsoadd module-
� Xref = xref()

67Tools

xref Tools Reference Manual

Replaces the module data [page 49] of all analyzed modules [page 50] the BEAM files
of which have been modified since last read by an add function or update. Application
membership of the modules is retained, and so is the value of the builtins option.
Returns a sorted list of the names of the replaced modules.

variables(Xref [, Options]) -> fok, [VariableInfo]g

Types:

� Options = [Option] | Option
� Option = predefined | user | fverbose, bool()g
� Reason = finvalid options, term()g
� VariableInfo = fpredefined, [variable()]g | fuser, [variable()]g
� Xref = xref()

Returns a sorted lists of the names of the variables of an Xref server [page 49]. The
default is to return the user variables [page 51] only.

See Also

beam lib(3), digraph(3), digraph utils(3), regexp(3), TOOLS User’s Guide [page 11]

68 Tools

List of Figures

1.1 Definition and use of functions . 13

1.2 Some predefined analyses as subsets of all functions . 14

69Tools

List of Figures

70 Tools

Glossary

BIF

Built-In Functions which perform operations that are impossible or inefficient to program in Erlang
itself. Are defined inthe module Erlang in the application kernel

71Tools

Glossary

72 Tools

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

add_application/3
xref , 57

add_directory/3
xref , 57

add_module/3
xref , 58

add_release/3
xref , 58

all/0
make , 45

all/1
make , 45

analyse/0
eprof , 28
fprof , 34

analyse/1
cover , 25
fprof , 34, 35

analyse/2
cover , 25
fprof , 34, 35

analyse/3
cover , 25

analyse_to_file/1
cover , 25

analyse_to_file/2
cover , 25

analyze/3
xref , 58

apply/2
fprof , 30

apply/3
fprof , 30

apply/4

fprof , 31

compile/1
cover , 24

compile/2
cover , 24

compile_directory/0
cover , 24

compile_directory/1
cover , 24

compile_directory/2
cover , 24

compile_module/1
cover , 24

compile_module/2
cover , 24

cover
analyse/1, 25
analyse/2, 25
analyse/3, 25
analyse_to_file/1, 25
analyse_to_file/2, 25
compile/1, 24
compile/2, 24
compile_directory/0, 24
compile_directory/1, 24
compile_directory/2, 24
compile_module/1, 24
compile_module/2, 24
is_compiled/1, 26
modules/0, 26
reset/0, 26
reset/1, 26
start/0, 24
stop/0, 26

d/1

73Tools

Index of Modules and Functions

xref , 59

dir/2
tags , 47

dirs/2
tags , 47

eprof
analyse/0, 28
log/1, 28
profile/1, 27
profile/2, 27
profile/4, 27
start/0, 27
start_profiling/1, 27
stop/0, 28
stop_profiling/0, 27
total_analyse/0, 28

file/2
tags , 47

files/1
make , 45

files/2
make , 46
tags , 47

forget/1
xref , 60

forget/2
xref , 60

format_error/1
xref , 60

fprof
analyse/0, 34
analyse/1, 34, 35
analyse/2, 34, 35
apply/2, 30
apply/3, 30
apply/4, 31
profile/0, 33
profile/1, 33
profile/2, 33
start/0, 30
stop/0, 30
stop/1, 30
trace/1, 32
trace/2, 31, 32

get_default/1

xref , 60

get_default/2
xref , 60

get_library_path/1
xref , 60

holes/1
instrument , 43

info/1
xref , 61

info/2
xref , 61

info/3
xref , 61

instrument
holes/1, 43
mem_limits/1, 43
memory_data/0, 43
read_memory_data/1, 43
sort/1, 43
store_memory_data/1, 44
sum_blocks/1, 44
type_string/1, 44

is_compiled/1
cover , 26

log/1
eprof , 28

m/1
xref , 63

make
all/0, 45
all/1, 45
files/1, 45
files/2, 46

mem_limits/1
instrument , 43

memory_data/0
instrument , 43

modules/0
cover , 26

profile/0
fprof , 33

74 Tools

Index of Modules and Functions

profile/1
eprof , 27
fprof , 33

profile/2
eprof , 27
fprof , 33

profile/4
eprof , 27

q/3
xref , 64

read_memory_data/1
instrument , 43

remove_application/2
xref , 65

remove_module/2
xref , 65

remove_release/2
xref , 65

replace_application/4
xref , 65

replace_module/4
xref , 66

reset/0
cover , 26

reset/1
cover , 26

root/1
tags , 47

set_default/2
xref , 66

set_default/3
xref , 66

set_library_path/3
xref , 67

sort/1
instrument , 43

start/0
cover , 24
eprof , 27
fprof , 30

start/2
xref , 67

start_profiling/1
eprof , 27

stop/0
cover , 26
eprof , 28
fprof , 30

stop/1
fprof , 30
xref , 67

stop_profiling/0
eprof , 27

store_memory_data/1
instrument , 44

subdir/2
tags , 47

subdirs/2
tags , 47

sum_blocks/1
instrument , 44

tags
dir/2, 47
dirs/2, 47
file/2, 47
files/2, 47
root/1, 47
subdir/2, 47
subdirs/2, 47

total_analyse/0
eprof , 28

trace/1
fprof , 32

trace/2
fprof , 31, 32

type_string/1
instrument , 44

update/2
xref , 67

variables/2
xref , 68

xref
add_application/3, 57
add_directory/3, 57
add_module/3, 58

75Tools

Index of Modules and Functions

add_release/3, 58
analyze/3, 58
d/1, 59
forget/1, 60
forget/2, 60
format_error/1, 60
get_default/1, 60
get_default/2, 60
get_library_path/1, 60
info/1, 61
info/2, 61
info/3, 61
m/1, 63
q/3, 64
remove_application/2, 65
remove_module/2, 65
remove_release/2, 65
replace_application/4, 65
replace_module/4, 66
set_default/2, 66
set_default/3, 66
set_library_path/3, 67
start/2, 67
stop/1, 67
update/2, 67
variables/2, 68

76 Tools

